
Representation of Rotation Symmetric Multiple-Valued Functions
Using Decision Diagrams

Shinobu Nagayama∗ Tsutomu Sasao† Jon T. Butler‡ Martin Lukac∗

∗Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima, JAPAN
†Dept. of Computer Science, Meiji University, Kawasaki, JAPAN

‡Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract—Rotation symmetric functions are a variant of
symmetric functions, such that function values are unchanged
by any rotation of digits in input vectors. Since rotation sym-
metric functions are resistant to linear attacks due to their non-
linear characteristics, they are promising for cryptographic ap-
plications. However, there are few studies on how to represent
them. This paper focuses on representation using functional
decomposition and decision diagrams, as a steppingstone to
find a compact representation of rotation symmetric functions.
Experimental results show that the presented representation is
promising.

Keywords-Rotation symmetric functions; multiple-valued func-
tions; functional decomposition; decision diagrams.

I. INTRODUCTION

Rotation symmetric (RotS) functions [15], [20], [29],
[30] are a class of functions such that function values are
unchanged by any rotation of digits (i.e., circular translation
of indices) in input vectors. They were introduced in 1999
by Pieprzyk and Qu [20]. It is known that RotS functions
are resistant to linear attacks due to their non-linear char-
acteristics, similarly to totally symmetric (TotS) functions
and bent functions [8], [13], [21], [22], [27], [32]. Thus,
RotS functions are promising for cryptographic applications.
Specifically, they can be used as components in the rounds
of efficient hashing algorithms, such as MD4, MD5, SHA,
and HAVAL [20], [29]. RotS functions have a wider range
of applications than TotS functions since the set of RotS
functions is a superset of the set of TotS functions, as will
be shown later.

While many studies on TotS functions [2], [5], [6], [9],
[12], [31], [34] and bent functions [21], [27], [32] have been
reported, few studies on RotS functions have been reported.
Their representation method and construction method, par-
ticularly, have not been studied yet [29], other than by
simple truth table or logic expression. As far as we know,
there is no study on decision diagrams for RotS functions.
Since finding compact representation of RotS functions
significantly benefits the above cryptographic applications,
as its steppingstone, this paper focuses on representation
using decision diagrams.

Although RotS functions are a variant of TotS functions,

their size complexity is quite different. It is well-known
that TotS functions are compactly represented by ordinary
decision diagrams [1], [3], [10]. However, as we will show
later, RotS functions belong to the same worst class as max-
imally asymmetric functions [7], [18] and random functions
in terms of size of ordinary decision diagrams. Thus, in
this paper, as another possibility, we consider functional
decomposition along with decision diagrams.

The rest of this paper is organized as follows: Section II
shows some definitions for rotation symmetric multiple-
valued functions and decision diagrams. Section III shows
some characteristics of RotS functions. Section IV presents
a decomposition method of RotS functions, and decision
diagrams for sub-functions obtained by the decomposition
method. Section V shows the size of decision diagrams for
the sub-functions, and Section VI concludes the paper.

II. PRELIMINARIES

This section shows definitions of rotation symmetric
multiple-valued functions [20], [29] and decision diagrams.

A. Rotation Symmetric Multiple-Valued Functions
Definition 1: For an n-variable r-valued function

f (xn−1,xn−2, . . . ,x0) : {0,1, . . . ,r − 1}n → {0,1, . . . ,r − 1},
assignments of values to the n variables are
input vectors ~X . When the rn input vectors
(0,0, . . . ,0) · · ·(r − 1,r − 1, . . . ,r − 1) are fed to the
function f in ascending order, the vector of obtained
function values is the function vector ~F .

Definition 2: A function f is totally symmetric (TotS)
iff its function vector ~F is unchanged by any permutation
of variable values.

Definition 3: We define a k-digit rotation of an input
vector ~X as follows:

Rot(~X ,k) = (xn−1−k,xn−2−k, . . . ,x0,xn−1,xn−2, . . . ,xn−k).

Corollary 1: Let Xd be an integer obtained by considering
~X as an n-digit base r number (xn−1,xn−2, . . . ,x0)r. Then,
Rot(~X ,k) can be also computed as follows:

Rot(~X ,k) = (Xd mod rn−k)× rk +

⌊
Xd

rn−k

⌋
.

153

2025 IEEE 55th International Symposium on Multiple-Valued Logic (ISMVL)

2378-2226/25/$31.00 ©2025 IEEE
DOI 10.1109/ISMVL64713.2025.00037

Table I
EXAMPLE OF TOTS FUNCTION fT AND ROTS FUNCTION fR .

x2 x1 x0 fT fR

0 0 0 2 0
1 1 1 0 1
2 2 2 1 2
0 0 1 1 0
0 1 0 1 0
1 0 0 1 0
0 0 2 0 2
0 2 0 0 2
2 0 0 0 2
0 1 1 1 1
1 1 0 1 1
1 0 1 1 1
0 2 2 1 0
2 2 0 1 0
2 0 2 1 0
1 1 2 0 1
1 2 1 0 1
2 1 1 0 1
1 2 2 0 2
2 2 1 0 2
2 1 2 0 2
0 1 2 2 0
1 2 0 2 0
2 0 1 2 0
0 2 1 2 1
2 1 0 2 1
1 0 2 2 1

Definition 4: An n-variable r-valued function f is rota-
tion symmetric (RotS) iff the following holds:

∀k, f (~X) = f (Rot(~X ,k)),

where 0 < k < n.

Example 1: Table I shows examples of a three-variable
ternary TotS function fT and a RotS function fR. In this
table, input vectors are reordered and grouped in ones
obtained by rotation. As shown in Table I, function values
of fT depend on combinations of input values. On the other
hand, function values of fR depend on rotations of ~X .

B. Decision Diagrams

Definition 5: A multi-valued decision diagram
(MDD) [10] is a rooted directed acyclic graph (DAG)
representing an r-valued function. The MDD is obtained by
recursively applying the extended Shannon expansion
to the r-valued function. It consists of r terminal
nodes representing function values, 0 to r − 1, and
nonterminal nodes representing input r-valued variables.
Each nonterminal node has r outgoing edges that correspond
to r values of an input variable. Terminal nodes have no
outgoing edges. In this paper, an MDD is obtained by
fixing the variable order in an MDD, and by applying the
following two reduction rules:

1) Coalesce equivalent sub-graphs.

0 2

x 0

2
0, 1

x 1

0

2 1 0

x 0

1 20

2

1

x 1

1

0 2 x 10

1

2

x 20

1

2

f

0 1

x 0

1
0, 2

1

1 2

x 0

20, 1

0 2

x 0

1, 20

0 1

x 0

1, 20

0 1 2

x 0

1 20

2 0

x 0

1, 20

R

Figure 1. MDD for RotS Function fR Defined in Table I

2) Delete nonterminal nodes v all whose outgoing edges
point to the same node, and redirect edges pointing to
v to its child node u.

Example 2: Fig. 1 shows an MDD for the RotS function
fR in Table I. In Fig. 1, for ensuring visibility, terminal nodes
in the MDD are NOT shared. The number of nodes in this
MDD is 15 (3 distinct terminal nodes and 12 distinct non-
terminal nodes).

Definition 6: A vectorized EVMDD (VEVMDD) [33]
is a variant of an MDD and an edge-valued MDD
(EVMDD) [17], and represents a multiple-output integer
function. It consists of one terminal node representing~0 and
nonterminal nodes with edges having vectors. While edges in
EVMDDs have integer (scalar) values, edges in VEVMDDs
can have vectors. The vectors consist of integers, and 0-
edges always have the zero vector. Output vectors of the
function are represented as a sum of vectors of edges
traversed from the root node to the terminal node.

Definition 7: An MDD with edge values for shift-
ing [19] is a variant of a VEVMDD, and its m-branch
nonterminal nodes are based on the following extended
Shannon expansion:

f = x0
i f0 + x1

i (f1 << s1(i))+ . . .

+xr−1
i (fr−1 << sr−1(i)),

where xi is a multiple-valued variable represented by a
nonterminal node, x j

i is its literal given by

x j
i =

{
1 (xi = j)
0 (Otherwise),

s j(i) is an edge value, and f j is a cofactor with f (xi =
j) [23]. The terminal node represents a unit vector ~e =
(0,0, . . . ,1). The unit vector ~e is shifted sequentially by
values s j(i) of edges traversed from the root node to the
terminal node. For convenience, we call this shift EVMDD
(SEVMDD).

Definition 8: A multiple-terminal ZDD (MTZDD) [19]
is a variant of a zero-suppressed binary decision diagram
(ZDD) [14] for representing a binary input (r + 1)-valued
output function, and it has r+1 terminal nodes. One of the

154

Table II
EQUIVALENCE CLASSES OF 4-VARIABLE TERNARY INPUT VECTORS.

~α ~X
α2 α1 α0 x3 x2 x1 x0

0 2 2

0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1
0 1 0 1
1 0 1 0

1 1 2

0 0 1 2
0 1 2 0
1 2 0 0
2 0 0 1
0 0 2 1
0 2 1 0
2 1 0 0
1 0 0 2
0 1 0 2
1 0 2 0
0 2 0 1
2 0 1 0

r+1 terminal nodes represents the invalid value /0, and the
others represent valid function values: 0,1, . . . ,r− 1. Each
nonterminal node represents each input binary variable, and
has two unweighted outgoing edges, 0-edge and 1-edge, that
correspond to two values of an input variable. In MTZDDs,
the variable order is fixed, and the following two reduction
rules are applied:

1) Coalesce equivalent sub-graphs.
2) Delete nonterminal nodes v whose 1-edge points to

the terminal node representing /0, and redirect edges
pointing to v to its child node u pointed by v’s 0-edge.

III. CHARACTERISTICS OF ROTS FUNCTIONS

A. Equivalence Classes of Input Vectors

For TotS functions, function values depend on combina-
tions of input values. Thus, we can classify input vectors into
equivalence classes, each of which has the same combination
of input values. Then, we denote each equivalence class as
follows:

~α = (αr−1,αr−2, . . . ,α1,α0),

where αi denotes the number of variables whose values
are i, and ∑

r−1
i=0 αi = n. We call those equivalence classes

α-equivalence classes [16]. The number of input vectors
belonging to each equivalence class is [18]:

n!
α0!α1! . . .αr−1!

.

Unlike TotS functions, function values of RotS functions
depend on rotations of ~X . Thus, ~X and its rotation Rot(~X ,k)
for 0 < k < n (i.e., up to n input vectors) can be classified
into an equivalence class. We call the equivalence class R-
equivalence class.

Example 3: Table II shows examples of α-equivalence
classes and R-equivalence classes for 4-variable ternary

input vectors. The α-equivalence class ~α = (0,2,2) has 6
input vectors, and two R-equivalence classes. One of the two
R-equivalence classes has only two input vectors: (0,1,0,1)
and (1,0,1,0). The ~α = (1,1,2) has 12 input vectors, and
all the other R-equivalence classes have 4 input vectors.

As shown in this example, an R-equivalence class is
clearly a subset of an α-equivalence class. For an n-variable
r-valued input vectors, the number of α-equivalence classes,
Nα, is obtained by the following [7], [28]:

Nα =

(
n+ r−1

r−1

)
.

On the other hand, the number of R-equivalence classes is
the same as the number of distinct circular permutations with
repetition. Thus, from Burnside’s lemma [4], the following
is derived straightforwardly:

Theorem 1: For an n-variable r-valued input vectors, the
number of R-equivalence classes, NR, is

NR =
1
n

n

∑
i=1

rgcd(n,i),

where gcd(n, i) is the greatest common divisor of n and i.

Similarly, the number of R-equivalence classes included in
an α-equivalence class is also derived as follows:

Corollary 2: For an n-variable r-valued input vectors,
the number of R-equivalence classes included in an α-
equivalence class ~α = (αr−1,αr−2, . . . ,α1,α0) is

1
n

n

∑
i=1

s(i)
Π

r−1
j t j(i)!

,

where

s(i) =
{

gcd(n, i)! (∑r−1
j α j ·gcd(n, i) mod n = 0)

0 (Otherwise),

and
t j(i) =

α j ·gcd(n, i)
n

.

From Corollary 2, α-equivalence classes (0,2,2) and
(2,2,0) include the same number of R-equivalence classes.
This means that the number of R-equivalence classes de-
pends only on a combination of αi’s values.

B. Comparison Between TotS and RotS Functions

As shown in Example 1, any TotS function is rotation
symmetric according to Definition 4. However, there exist
RotS functions that are not totally symmetric. Thus, a set of
TotS functions is a proper subset of RotS functions even
though α-equivalence classes for TotS functions include
R-equivalence classes for RotS functions. That is, TotS
functions can be considered as a special case of RotS
functions. It is well-known that TotS functions are compactly
represented by MDDs [5]. However, as for RotS functions

155

Table III
AVERAGE NUMBER OF NODES IN MDD FOR VARIOUS FUNCTIONS.

n r TotS RotS MAF Random UB [17]
3 3 12 13 14 14 16
4 3 20 29 33 31 40
5 3 33 65 66 66 67
6 3 51 148 148 148 148
7 3 75 389 390 388 391
8 3 105 1,105 1,106 1,105 1,120
9 3 142 3,183 3,187 3,186 3,307
10 3 188 8,879 8,865 8,872 9,868
11 3 243 22,297 22,275 22,299 29,524
12 3 303 48,225 48,237 48,234 49,207
13 3 387 108,253 108,254 108,253 108,256
3 4 19 25 25 24 25
4 4 39 81 82 80 89
5 4 72 246 250 250 341
6 4 124 591 592 593 597
7 4 201 1,621 1,621 1,621 1,621
8 4 309 5,717 5,717 5,717 5,717
9 4 453 22,101 22,101 22,101 22,101
10 4 642 87,636 87,636 87,637 87,637
3 5 26 36 36 36 36
4 5 61 158 157 159 161
5 5 130 722 727 727 786
6 5 255 2,763 2,749 2,750 3,906
7 5 460 7,012 7,009 7,012 7,031
8 5 779 22,656 22,656 22,656 22,656
9 5 1,252 100,781 100,781 100,781 100,781
Boldfaced numbers show that the number of nodes in an MDD
reaches at its upper bound.

that are a superset of TotS functions, the size of MDDs have
not been studied yet.

Table III compares the size of MDDs for various n-
variable r-valued functions. The size of MDDs is the average
number of nodes in 10 MDDs for randomly generated
functions. In Table III, the average is rounded to an integer.
The column “TotS” shows the size of MDD for TotS
functions, “RotS” shows the size for RotS functions, “MAF”
shows the size for maximally asymmetric functions [18], and
“Random” shows the size for functions whose values are
generated by uniform random numbers. The column “UB”
shows the upper bound on the number of nodes in an MDD
for an n-variable r-valued function. It is obtained by

rn−l−1
r−1

+ rrl
,

where l is the largest integer satisfying n− l ≥ rl [17].
The variable order for MDDs is the natural order (i.e.,
xn−1,xn−2, . . . ,x0).

As shown in Table III, the size of MDDs for RotS
functions is much larger than that for TotS functions even
though RotS functions are symmetric. The size for RotS
functions is almost equal to the upper bound, similarly
to maximally asymmetric functions and random functions.
Although the size of these MDDs is much smaller than the
size of their truth tables [18], it has the largest size among
MDDs.

Table IV
DECOMPOSING fR BY INDICES OF ~α AND R-EQUIV. CLASSES.

~α Index of
α2 α1 α0 idx idx R-Equiv. h
0 0 3 index0 index0 0 0
0 3 0 index1 index1 0 1
3 0 0 index2 index2 0 2
0 1 2 index3 index3 0 0
1 0 2 index4 index4 0 2
0 2 1 index5 index5 0 1
2 0 1 index6 index6 0 0
1 2 0 index7 index7 0 1
2 1 0 index8 index8 0 2
1 1 1 index9 index9 0 0

index9 1 1

IV. DECOMPOSITION METHODS OF ROTS FUNCTIONS

As shown in the previous section, the size of MDDs
for RotS functions is almost equal to the upper bound on
the size of MDDs. As another possibility, in this section,
we consider a functional decomposition method along with
decision diagrams.

As described in Section III, R-equivalence classes are
subsets of an α-equivalence class. Thus, by indexing each R-
equivalence class in an α-equivalence class, we can represent
a given RotS function without using input vectors directly.
Then, similarly to TotS functions [19], we can decompose
a given RotS function into the following functions:

1) g(~X) transforming ~X into ~α,
2) an index generation function idx(~α) [24], [25] produc-

ing an index from ~α,
3) a function gCF(~X) producing an index of R-

equivalence class from ~X , and
4) h(idx,gCF) producing a function value of the orig-

inal RotS function from both indices of ~α and R-
equivalence class.

Example 4: Table IV shows tables representing fR shown
in Table I using the above decomposition.

The functions g(~X) and idx(~α) can be represented com-
pactly by a VEVMDD and an SEVMDD, respectively, in
exactly the same way as in [19]. By representing both
indices using the one-hot encoding, the function h can be
represented compactly by an MTZDD.

Example 5: Fig. 2 shows an MTZDD for h shown in
Table IV.

Theorem 2: A function h(idx,gCF) obtained by decompo-
sition of an r-valued RotS function can be represented by
an MTZDD having at most

NR + r+1

nodes, where NR is the number of R-equivalence classes.
(Proof) Let a valid-path in an MTZDD be a sequence of
edges and nodes leading from the root node to a terminal
node representing a valid function value. Since a valid-path

156

h

index0

index1

index2

index3

index4

index5

index6

index7

index8

index9

0120

1

Figure 2. MTZDD for h

for h represents a tuple of an index of ~α, an index of R-
equivalence class, and a function value of h, the number of
distinct valid-paths is exactly NR. On those valid-paths, Nα

nodes for indices of ~α can be shared among R-equivalence
classes when an α-equivalence class has more than one
R-equivalence class. Since R-equivalence classes are non-
overlapping subsets of an α-equivalence class, their indices
can be represented with one fewer nonterminal node than
the number of R-equivalence classes. Thus, exactly NR
nonterminal nodes are needed to represent all indices. By
adding r+ 1 terminal nodes to the number of nonterminal
nodes, we have the theorem.

The function gCF(~X) producing an index of R-equivalence
class from ~X is a classification function [26]. The complexity
of classification functions roughly depends on the number
of input vectors to be classified. To reduce the number
of input vectors for gGF , we delete input vectors in R-
equivalence classes equal to α-equivalence classes. This is
because in that case, function values can be specified by
only α-equivalence classes, and we do not need to classify
input vectors with R-equivalence classes.

In addition, we reduce the number of input vectors by
merging α-equivalence classes having the same number of
R-equivalence classes. For example, the three α-equivalence
classes shown in Table V can be merged into one since we
can choose a correct R-equivalence class in an α-equivalence
class by converting input values. Such conversion of input
values can be represented compactly by a VEVMDD, as
shown in Fig. 3. In this figure, the triangle part branches by
~α, and then a rectangle part converts input values of ~X in

Table V
R-EQUIV. CLASSES OF 4-VARIABLE TERNARY INPUT VECTORS.

~α ~X
α2 α1 α0 x3 x2 x1 x0

0 2 2

0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1
0 1 0 1
1 0 1 0

2 0 2

0 0 2 2
0 2 2 0
2 2 0 0
2 0 0 2
0 2 0 2
2 0 2 0

2 2 0

1 1 2 2
1 2 2 1
2 2 1 1
2 1 1 2
1 2 1 2
2 1 2 1

x 3
0

1

2

0

(1, 0, 0, 0)

x 20

1

2

(0, 1, 0, 0)

x 10

1

2

(0, 0, 1, 0)

x 00

1

2

(0, 0, 0, 1)

Branches by α

C
o
n
v
ersio

n
 o

f V
alu

es

C
o
n
v
ersio

n
 o

f V
alu

es

C
o
n
v
ersio

n
 o

f V
alu

es

C
o
n
v
ersio

n
 o

f V
alu

es

C
o
n
v
ersio

n
 o

f V
alu

es

Figure 3. VEVMDD for Conversion of Input Values.

each α-equivalence class. The VEVMDD on the right side
of Fig. 3 converts input vectors in ~α = (2,2,0) into input
vectors in ~α = (0,2,2). When an α-equivalence class has
only one R-equivalence class, the VEVMDD for conversion
has only the terminal node.

Theorem 3: The upper bound on the number of nodes in
an VEVMDD converting n-variable ~X according to ~α is

Nα(n+1),

where Nα is the number of α-equivalence classes.

(Proof) In Fig. 3, the triangle part chooses an α-equivalence
class, and thus, it requires at most Nα−1 nonterminal nodes.
Each α-equivalence class has a rectangle part having n
nonterminal nodes. By adding one for the terminal node,
we have the theorem.

157

fg idx

α

X h

SEVMDD MTZDD

g’
CF

value

converter

Y

VEVMDD

VEVMDD MDD

Figure 4. Decomposition Based on Equivalence Classes

Table VI
NUMBER OF NODES FOR SUB-FUNCTIONS IN DECOMPOSITION.

Function Independent Parts Ratio
n r g idx CV gCF h (%)
3 3 4 4 4 9 14.8 114
4 3 5 4 24 19 26.6 92
5 3 6 4 46 60 49.1 76
6 3 7 4 61 200 116.0 78
7 3 8 4 71 454 288.1 74
8 3 9 4 81 1,422 785.9 71
9 3 10 4 91 4,486 2,124.3 67
10 3 11 4 101 10,747 5,833.4 66
11 3 12 4 111 33,855 15,972.0 72
12 3 13 4 121 105,709 44,194.1 92
13 3 14 4 131 263,031 122,425.3 113
3 4 4 5 13 9 28.7 115
4 4 5 5 51 45 65.9 81
5 4 6 5 112 116 180.9 74
6 4 7 5 172 421 618.8 105
7 4 8 5 246 1,528 2,187.0 135
8 4 9 5 323 6,203 7,962.3 139
9 4 10 5 394 18,973 28,734.7 130
10 4 11 5 451 73,649 104,370.5 119
3 5 4 6 26 9 49.5 138
4 5 5 6 95 45 143.7 91
5 5 6 6 213 257 530.4 73
6 5 7 6 393 781 2,364.3 86
7 5 8 6 641 3,155 10,627.2 152
8 5 9 6 939 13,554 47,947.2 212
9 5 10 6 1,338 60,249 215,459.4 214
Ratio = h / (RotS in Table III) × 100

Fig. 4 shows the above decomposition of RotS functions
and decision diagrams for each sub-function. In this de-
composition, only the h depends on a given RotS function,
while the others are independent of function values. That is,
generating only the h for each RotS function is enough, and
the others are the same (enough to generate them only once)
for any RotS function.

V. EXPERIMENTAL RESULTS

Table VI shows the number of nodes in decision diagrams
for sub-functions in decompositions of n-variable r-valued
RotS functions. The column “g” shows the number of nodes
in a VEVMDD for the sub-function g converting ~X into
~α. The column “idx” shows the number of nodes in an

SEVMDD for idx producing a one-hot encoded index from
~α. The numbers of nodes for g and idx are n+1 and r+1,
respectively [19]. The column “CV” shows the number of
nodes in an VEVMDD for merging α-equivalence classes
and converting input values ~X into ~Y . The column “g′CF ”
shows the number of nodes in an MDD for a classification
function producing an index of R-equivalence class from
~Y . The column “h” shows the average number of nodes
in MTZDDs for producing function values of the 10 RotS
functions same as Table III. And, the column “Ratio” shows
the ratio of the size of MTZDD for h to the size of MDD
in Table III. The variable order for decision diagrams is the
natural order (e.g., xn−1,xn−2, . . . ,x0).

The sub-functions g, idx, CV, and g′CF are invariant for any
RotS function. Thus, for each RotS function, constructing
only the MTZDD for h is sufficient. As shown in Table VI,
the size of MTZDDs for h can be smaller than the size of
ordinary MDDs for whole RotS functions. However, as n or r
increases, the number of R-equivalence classes significantly
increases, and thus, the size of MTZDDs becomes larger.
Along with that, the size of MDDs for classification func-
tions g′CF also becomes large. Thus, although the presented
representation method based on functional decomposition is
promising to construct decision diagrams for RotS functions
efficiently, there is enough room for improvement to their
compact representation. Since the size for g, idx, and CV is
small enough, reducing the size for classification functions
would be effective.

VI. CONCLUSION AND FUTURE WORK

This paper presented a decomposition method of a rota-
tion symmetric (RotS) multiple-valued function for decision
diagram-based representation. The presented decomposition
method is based on equivalence classes of input vectors, and
represents a RotS function using five sub-functions. Four of
the five sub-functions are invariant for any RotS function.
Thus, constructing a decision diagram for only one sub-
function is sufficient. This paper derived some theorems on
sizes of decision diagrams for the sub-functions. Experimen-
tal results using randomly generated RotS multiple-valued
functions showed a possibility for compact representation
of RotS functions.

When n or r is large, the size of MDD for a classifica-
tion function in the decomposition method becomes large.
Thus, reducing the size for classification functions would be
effective for compact representation of RotS functions. That
is our future work.

ACKNOWLEDGMENTS

This research was partly supported by the JSPS KAK-
ENHI Grant (C), No.23K11038, 2024. Dr. M. Behrisch’s
comments at ISMVL 2023 motivated us to begin this study.
The reviewers’ comments were helpful in improving the
paper.

158

REFERENCES

[1] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Com-
put., Vol. C-27, No. 6, pp. 509–516, Jun. 1978.

[2] R. C. Born, “An iterative technique for determining the
minimal number of variables for a totally symmetric function
with repeated variables,” IEEE Trans. Comput., Vol. C-21,
No. 10, pp. 1129–1131, 1972.

[3] R. E. Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” IEEE Trans. Comput., Vol. C-35, No. 8,
pp. 677–691, 1986.

[4] W. Burnside, Theory of Groups of Finite Order, Project
Gutenberg 2012.

[5] J. T. Butler, D. S. Herscovici, T. Sasao, and R. J. Barton III,
“Average and worst case number of nodes in decision dia-
grams of symmetric multiple-valued functions,” IEEE Trans.
Comput., Vol. 46, No. 4, pp. 491–494, Apr. 1997.

[6] J. T. Butler and T. Sasao, “On the properties of multiple-
valued functions that are symmetric in both variable values
and labels,” 28th International Symposium on Multiple-Valued
Logic 1998, pp. 83-88, 1998.

[7] J. T. Butler and T. Sasao, “Maximally asymmetric multiple-
valued functions,” 49th International Symposium on Multiple-
Valued Logic 2019, pp. 188-193, 2019.

[8] A. Canteaut and M. Videau, “Symmetric Boolean functions,”
IEEE Trans. Infor. Theory, Vol. 51, No. 8, pp. 2791–2811,
2005.

[9] B. Dahlberg, “On symmetric functions with redundant vari-
ables - weighted functions,” IEEE Trans. Comput., Vol. C-22,
No. 5, pp. 450–458, 1973.

[10] T. Kam, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Multi-valued decision diagrams: Theory and ap-
plications,” Multiple-Valued Logic: An International Journal,
Vol. 4, No. 1-2, pp. 9–62, 1998.

[11] Z. Kohavi, Switching and Finite Automata Theory, McGraw-
Hill Book Company, 1979.

[12] D. T. Lee and S. J. Hong, “An algorithm for transformation
of an arbitrary switching function to a completely symmetric
function,” IEEE Trans. Comput., Vol. C-25, No. 11, pp. 1117–
1123, 1976.

[13] S. Maitra and P. Sarkar, “Maximum nonlinearity of symmetric
Boolean functions on odd number of variables,” IEEE Trans.
Infor. Theory, Vol. 48, No. 9, pp. 2626–2630, 2002.

[14] S. Minato, “Zero-suppressed BDDs for set manipulation in
combinatorial problems,” 30th Design Automation Confer-
ence, pp. 272–277, 1993.

[15] C. Moraga, R. S. Stanković, and J. T. Astola, “On the Reed-
Muller-Fourier spectrum of multiple-valued rotation symmet-
ric functions,” 48th International Symposium on Multiple-
Valued Logic, pp.241-246, 2018.

[16] C. Moraga, M. Stanković, and R. S. Stanković, “On ternary
symmetric bent functions,” 50th International Symposium on
Multiple-Valued Logic, pp.76-81, 2020.

[17] S. Nagayama, T. Sasao, and J. T. Butler, “Analysis of multi-
state systems with multi-state components using EVMDDs,”

42nd International Symposium on Multiple-Valued Logic,
pp.122-127, May 2012.

[18] S. Nagayama, T. Sasao, and J. T. Butler, “On representa-
tion of maximally asymmetric functions based on decision
diagrams,” Journal of Applied Logics – IFCoLog Journal of
Logics and Their Applications, Vol. 10, No. 6, pp. 1105-1130,
Dec. 2023.

[19] S. Nagayama, T. Sasao, and J. T. Butler, “Functional de-
composition of symmetric multiple-valued functions and their
compact representation in decision diagrams,” IEICE Trans.
on Information and Systems, Vol. E107-D, No. 8, pp. 922–
929, Aug. 2024.

[20] J. Pieprzyk and C. X. Qu, “Fast hashing and rotation sym-
metric functions,” Journal of Universal Computer Science,
Vol. 5, No. 1, pp. 20–31, 1999.

[21] O. S. Rothaus, “On ”bent” functions,” Journal of Combina-
torial Theory, Series A, Vol. 20, Issue 3, pp. 300-305, 1976.

[22] P. Sarkar and S. Maitra, “Balancedness and correlation immu-
nity of symmetric Boolean functions,” R. C. Bose Centenary
Symp., Vol. 15, pp. 176–181, 2003.

[23] T. Sasao, Switching Theory for Logic Synthesis, Kluwer
Academic Publishers 1999.

[24] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

[25] T. Sasao, “Index generation functions: recent developments
(invited paper),” 41st International Symposium on Multiple-
Valued Logic, pp. 1–9, May 2011.

[26] T. Sasao, Classification Functions for Machine Learning and
Data Mining, Springer, 2023.

[27] P. Savicky, “On the bent Boolean functions that are symmet-
ric,” European J. Combinatorics, Vol. 15, Issue 4, pp. 407-
410, 1994.

[28] R. S. Stanković, M. Stanković, J. T. Astola, and C. Moraga,
“Remarks on similarities among ternary bent functions,” 49th
International Symposium on Multiple-Valued Logic, pp.79-84,
2019.

[29] P. Stănică and S. Maitra, “Rotation symmetric Boolean func-
tions – count and cryptographic properties,” Discrete Applied
Mathematics, Vol. 156, No. 10, pp. 1567-1580, 2008.

[30] P. Stănică, T. Sasao, and J. T. Butler, “Distance duality on
some classes of Boolean functions,” Journal of Combinatorial
Mathematics and Combinatorial Computing, Vol. 107, pp.
181-198, 2018.

[31] I. Stojmenovic, “On Sheffer symmetric functions in three-
valued logic,” Discrete Applied Mathematics, Vol. 22, Issue 3,
pp. 267-274, 1988.

[32] N. Tokareva, Bent functions: Results and Applications to
Cryptography, Academic Press, 2015.

[33] B. Xue, S. Nagayama, M. Inagi, and S. Wakabayashi, “A
programmable architecture based on vectorized EVBDDs for
network intrusion detection using random forests,” Interna-
tional Symposium on Nonlinear Theory and Its Applications,
pp. 132–135, 2017.

[34] S. S. Yau and Y. S. Tang, “Transformation of an arbitrary
switching function to a totally symmetric function,” IEEE
Trans. Comput., Vol. C-20, No. 12, pp. 1606–1609, 1971.

159

