
Approximate Synthesis for Classification Functions
Tsutomu Sasao

Department of Computer Science, Meiji University,
Kawasaki 214-8571, Japan

Abstract—A classification function is a multi-valued function,
where the function values for only a fraction of the input
combinations are defined. Many variables in such a function are
redundant, and can be eliminated to reduce the circuit size to
implement the function. One can further reduce the number of
variables by using linear transformation. However, by relaxing
the requirement for full accuracy, we can further reduce the
number of variables. This paper derives expected number of
errors for approximate logic synthesis. Experimental results for
various functions are shown.

Index Terms—functional decomposition, linear transformation,
minimization of variables, MNIST, partially defined function,
approximate logic synthesis, dimension reduction, multi-valued
logic, logic synthesis, confidence interval.

I. INTRODUCTION

Classification is one of the fundamental problems in ma-
chine learning. For most input vectors, the values of the
function are undefined. In such cases, the function can be
represented with fewer variables than the original function.

Fig. 1.1 shows the circuit to realize a classification function,
where L realizes linear functions, while G realizes general
functions of p variables, where p < n. We assume that G is
implemented by a memory.

To further reduce the memory size, we use approximate
logic synthesis [7], [14]. That is, to permit a small number
of errors to reduce the number of variables. This paper
considers the number of errors for approximate logic synthesis.
Especially, this paper shows that the expected number of errors
can be derived from p, the number of the variables to the
memory, and ki, the number of vectors such that f(�a) = i.
The approach is tested for various functions.

The rest of the paper is organized as follows: Section
II shows definitions and basic properties of classification
functions and linear decompositions; Section III shows a moti-
vating example illustrating the effect of approximate memory-
based synthesis. Section IV derives the expected numbers of
errors when the number of inputs to the memory are limited to
p−1 and p−2. Section V shows experimental results; Section
VI describes the data sets used in the experiment; Section VII
shows related works. And, Section VIII summarizes the paper.

II. DEFINITIONS AND BASIC PROPERTIES

Definition 2.1: Let n be the number of variables, m ≥ 2
be the number of classes, B = {0, 1}, D ⊂ Bn, and
M = {0, 1, 2, . . . ,m − 1}. Then, a classification function
is a mapping: f : D → M .

Example 2.1: Table 2.1 is a registered vector table of the
classification function with n = 6, m = 2, and |D| = 10.

X

n p

O np) O q p )

q

Fig. 1.1. Linear decomposition.

TABLE 2.1
REGISTERED VECTOR TABLE FOR f

x1 x2 x3 x4 x5 x6 f
1 1 0 1 1 1 0
1 1 0 0 1 1 0
0 1 1 0 1 1 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
1 1 1 0 1 1 1
1 0 1 1 1 1 1
1 0 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1

Each vector in the table is a registered vector. Since n = 6,
there are 26 possible input combinations, but the function is
defined for only 10 combinations. For the other 64− 10 = 54
combinations, function values are undefined.

Next, we show a reduction of variables in classification
functions.

Example 2.2: The function f in Table 2.1 can be represented
by x1, x2, x3, and x4. That is, four variables are sufficient
to represent the function. As shown in Table 2.2, all the bit
patterns of the first four bits are distinct. A similar statement
is not true of any set of three variables. However, in Table 2.3,
we show a method to reduce the number of variables to three.

Consider the decomposition of the function shown in
Fig. 1.1 [6], where L contains a linear function, while G
contains a general function. The cost of L is O(np), while
the cost of G is O(q2p). We assume that L is implemented
by a circuit consisting of 2-input EXOR gates, while G is
implemented by a memory (look-up table). When n is large,
the cost of L can be neglected. The functions produced by the
circuit L in Fig. 1.1 have the form:

yi = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn,



TABLE 2.2
f REPRESENTED WITH x1, x2, x3

AND x4 .

x1 x2 x3 x4 f
1 1 0 1 0
1 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 0 0 0 0
1 1 1 0 1
1 0 1 1 1
1 0 0 0 1
0 0 1 0 1
0 0 0 1 1

TABLE 2.3
f REPRESENTED WITH y1, y2 AND

y3 .

y1 y2 y3 f
1 0 0 0
1 0 1 0
1 1 0 0
1 0 1 0 *
0 0 0 0
1 1 1 1
0 1 0 1
0 0 1 1
0 1 0 1 *
0 0 1 1 *

where aj ∈ {0, 1}. yi is called a compound variable.
∑n

i=1 ai
is the compound degree.

Example 2.3: When we use the linear transformation:

y1 = x2,

y2 = x3,

y3 = x1 ⊕ x4,

the function in Table 2.2 can be represented by only three
variables as shown in Table 2.3. * denotes duplicated vectors.

Definition 2.2: A classification function f is reducible if f
can be represented with fewer variables than the original func-
tion by a linear transformation. Otherwise, f is irreducible.

The function in Table 2.3 is irreducible. That is, we cannot
reduce the number of variables by linear transformation.

As for the number of compound variables p in an irreducible
classification function, we have the following result [13].

Theorem 2.1: Let ki be the number of registered vectors �a
such that f(�a) = i. Then, with a linear transformation, f can
be represented by p compound variables, where

p ≤ �log2(1 +
∑

(i<j)

kikj)	.

In an approximate logic synthesis, a small number of errors
are permitted to reduce the circuit size. The error ratio shows
how much error occurs when some of input variables are
eliminated.

Definition 2.3: The error ratio of the classification function
f is

ER(f) =
N Errors

k
,

where k =
∑m−1

i=0 ki is the total number of the registered
vectors, and N Errors is the number of errors when the
registered vectors are applied to f .

III. MOTIVATING EXAMPLE

Example 3.1: In the MNIST [25] handwritten digit recog-
nition data set, consider the 784-variable two-class function
f , where the images are binarized by the most significant bit,
and

f(�a) = 0 if �a corresponds to a digit 0, 1, 2, 3, or 4,
f(�a) = 1 if �a corresponds to a digit 5, 6, 7, 8, or 9.

TABLE 3.1
NUMBER OF VARIABLES VS NUMBER OF ERRORS IN MNIST-2CLASS

FUNCTION.

Number of Variables Number of Errors Error Ratio
p− 4 = 20 524 9.92× 10−3

p− 3 = 21 268 5.07× 10−3

p− 2 = 22 117 2.21× 10−3

p− 1 = 23 39 7.38× 10−4

p = 24 0 0

By using a linear transformation, we have an irreducible
function with p = 24 variables. Thus, the circuit requires a
linear circuit and a memory with 24 inputs. After removing
duplicated vectors, we have k0 = 25021, k1 = 27802, and
k = k1 + k2 = 52823.

Table 3.1 shows the relation among the number of variables,
the number of errors, and the error ratio. As expected, with the
increase of the variables, the number of errors decreased. The
method to compute the number of errors will be illustrated in
Example 4.1. When p−4 = 20 variables are used to represent
f , the number of errors is 524, and the error ratio is 9.92 ×
10−3. When p − 1 = 23 variables are used to represent f ,
the number of errors is 39, and the error ratio is 7.38× 10−4.
When p − 4 = 20 variables are used to represent f , the size
of the memory can be reduced to 1/16 of the exact (100%
accurate) realization.

In the next section, we derive the expected number of errors
and the variance from p, k0, and k1.

IV. EXPECTED NUMBER OF ERRORS

In this part, we derive the expected number of errors, when
the number of variables to the memory is less than p, where p
is the number of the variables of the irreducible classification
function. To derive the expected value using statistics, we need
the following:

Definition 4.1: In probability theory and statistics, a col-
lection of random variables is independent and identically
distributed (IID)[22], [13] if each random variable has the
same probability distribution as the others and all are mutually
independent.

IID is often used in machine learning [2]. To derive the
expected number of errors, we assume that the values of the
truth table of the function are IID1

Theorem 4.1: In a p-variable irreducible classification func-
tion f , if the values of functions are IID, then the expected
number of errors in an approximate logic synthesis for f with
p− 1 variables is

E1(f) =

∑
(i<j) kikj

2p
,

where ki is the number of registered vectors �a such that
f(�a) = i.

1Unfortunately, for most functions used for experiments, this assumption
do not hold.



(Proof) Assume that xp is not used to represent the
function f . In this case, an error occurs when both of
f(a1, a2, . . . , ap−1, 0) and f(a1, a2, . . . , ap−1, 1) are speci-
fied, and their values are different, where ai ∈ {0, 1}.

Let A be the probability of an error. Then we have

A =
∑

(i�=j)

αiαj ,

where αi =
ki

2p . The expected number of errors is

E1(f) = 2p−1 ×A =

∑
(i<j) kikj

2p
,

where we used the relation
∑

(i�=j)

αiαj = 2
∑

(i<j)

αiαj .

�

Theorem 4.2: In a p-variable irreducible classification func-
tion f , if the values of functions are IID, then the expected
number of errors in an approximate logic synthesis for f with
p− 2 variables is

E2(f) 

3
∑

(i<j) kikj

2p
,

where ki is the number of registered vectors �a such that
f(�a) = i.

(Proof) Assume that xp−1 and xp are not used to represent
the function f . In this case, an error occurs when at least two
of

f(a1, a2, . . . , ap−2, 0, 0), f(a1, a2, . . . , ap−2, 0, 1),

f(a1, a2, . . . , ap−2, 1, 0), f(a1, a2, . . . , ap−2, 1, 1).

are specified, and their values are different.
We use a similar assumption to the proof for Theorem 4.1.

Let B be the probability of an error, Then we have

B 
 6
∑

(i�=j)

αiαj ,

where αi =
ki

2p . This can be proved as follows: Since, ki � 2p,
αi is very small. There are four rows in the decomposition
chart (xp−1, xp−2): (0,0), (0,1), (1,0), and (1,1). There are(
4
2

)
= 6 ways an error can occur. Two errors occur when the

four values are specified, and two of them are 1, and the others
are 0. For example, in the column with (x1, x2, x3) = (1, 1, 1)
of Fig. 4.2, two errors can occur. However, the probability
of the occurrence of more than two inconsistencies is 6α2

iα
2
j

which is very small, and can be neglected.
Hence, the expected number of errors is

E2(f) = 2p−2 ×B 
 3
∑

(i<j) kikj

2p
.

�

Theorem 4.3: The variance of errors in an approximate logic
synthesis for f with p− 1 variables is

V1(f) 

∑

(i<j) kikj

2p
,

where ki is the number of registered vectors �a such that
f(�a) = i.
(Proof) The variance can be obtained as

V1(f) = 2p−1A(1−A).

Since A is very small, 1−A can be approximated by 1. Thus,
we have V1(f) 
 E1(f). �

Errors produced by an approximate synthesis follows a
normal distribution in their frequency of occurrence.

Theorem 4.4: In a normal distribution, let μ be the expected
number of events, and let σ2 be the variance. Then, 95.45%
of the cases, the numbers of events are within the confidence
interval [μ− 2σ, μ+ 2σ].

TABLE 4.1
EXAMPLE CLASSIFICATION FUNCTION

x1 x2 x3 x4 x5 f
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 0 0 1
1 0 0 0 1 1
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 0
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 1

Example 4.1: Consider the classification function in Table
4.1, where n = 5, m = 2, and k0 = k1 = 9. This function is
irreducible, that is, we cannot reduce the number of variables
by linear decomposition. Consider the decomposition chart
[1], [8] in Fig. 4.1. X1 = (x1, x2, x3, x4) denotes the column
variables, while X2 = (x5) denotes the row variable. It shows
the case when the function is implemented by a memory
with four variables: (x1, x2, x3, x4). Blank elements are don’t
cares. Note that the last two columns have the asterisk marks.
They show that there exist inconsistencies when the input
values (x1, x2, x3, x4) are (1, 1, 1, 0) and (1, 1, 1, 1). This
means that an error can occur when the input values are
(1,1,1,0) or (1,1,1,1). Other columns are consistent. In this
case, the number of errors is two.

Consider the decomposition chart in Fig. 4.2. X1 =
(x1, x2, x3) denotes the column variables, while X2 =
(x4, x5) denotes the row variables. It shows the case when
the function is implemented by a memory with three variables:
(x1, x2, x3). In this case, three columns with asterisk marks
have an inconsistency. This means that an error occurs when
the input values (x1, x2, x3) are (0,0,1), (1,1,0), or (1,1,1).
Other columns are consistent. In this case, the number of errors
is three.

V. EXPERIMENTAL RESULTS

To investigate the number of errors in approximate synthe-
sis, we decomposed various functions. Details of the functions



∗ ∗
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x2

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x3

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x4

0 0 1 0 0 1 1 0 1 0
1 0 0 1 1 1 0 1 0 1

x5

Fig. 4.1. Example decomposition chart for f showing two errors when (x1, x2, x3, x4) are
used as inputs.

∗ ∗ ∗
0 0 0 0 1 1 1 1 x1

0 0 1 1 0 0 1 1 x2

0 1 0 1 0 1 0 1 x3

00 1 0 1 1 0 1
01 0 1 0 0
10 0 0 0
11 0 1 1 1 1

x4x5

Fig. 4.2. Example decomposition chart for f showing three
errors when (x1, x2, x3) are used as inputs.

TABLE 5.1
NUMBER OF ERRORS FOR APPROXIMATE SYNTHESIS

Function Data Comp. Number of Errors
Vari. Experimental Expected

Function Name n m k p p− 1 p− 2 p− 1 p− 2
4350WORDS 75 14 4, 350 18 40 87 23.2 69.5
CHESS3196 75 2 3, 196 15 13 36 66.7 200.2
CIFAR32× 32 1024 2 9, 930 19 39 120 43.2 129.6
COMPANIES 30 9 3, 700 18 13 40 16.5 49.6
CONNECT-4 126 3 67, 557 22 357 974 269.0 806.9
FASHION-MNIST 784 10 59, 954 25 74 189 44.5 133.4
LETTER-RECOGNITION 256 26 20, 000 21 58 204 65.5 196.6
MNIST-2CLASS 784 2 59, 984 24 39 117 41.5 124.4
MNIST14× 14 196 10 58, 191 25 44 129 38.5 115.5
MNIST28× 28 784 10 59, 981 25 51 127 37.9 113.8
POKER HAND 85 10 25, 010 21 51 243 83.4 250.2
RANDOM4000 30 4 4, 000 18 19 59 22.8 68.3
SPAM MAIL FILTER 128 2 20, 000 22 17 51 23.8 71.3
SPLICE 240 3 3, 174 15 19 49 56.0 168.0

TABLE 5.2
NUMBER OF ERRORS WHEN VARIABLE xi IS

ELIMINATED.

i Errors i Errors
1 45 13 42
2 50 14 57
3 59 15 40
4 68 16 61
5 67 17 51
6 48 18 60
7 49 19 57
8 53 20 64
9 50 21 76
10 80 22 60
11 47 23 67
12 39 24 56

are shown in Section VI. Table 5.1 shows the results. The first
column shows the function name; the second column shows
the number of binary variables n; the third column shows the
number of classes m; the fourth column shows k, the total
number of the registered vectors; the fifth column shows p,
the number of compound variables in an irreducible function,
which was obtained by Algorithm 6.1.1 in p.54 of [13].

The sixth column shows the number of errors when the
number of variables is limited to p − 1; the seventh column
shows the number of errors when the number of variables is
limited to p−2; the eighth column shows the expected number
of errors when the number of variables is limited to p − 1
derived by Theorem 4.1; the last column shows the expected
number of errors when the number of variables is limited to
p− 2 derived by Theorem 4.2.

When the number of the variables is limited to p − 1, the
size of the memory is reduced to a half of the exact (100%
accurate) realization. Also, when the number of the variables is
limited to p−2, the size of the memory is reduced to a quarter
of the exact realization. From Table 5.1, we can observe that
the number of errors for p − 2 is approximately three times
that for p − 1. Note that the number of errors depends on
the variable xi to eliminate. In Table 5.1, we used a heuristic
method to find a variable to eliminate.

Example 5.1: Consider MNIST 2-Class function that ap-
peared in Example 3.1. In this case p = 24. After removing

duplicated vectors, we have k0 = 25021 and k1 = 27802.
Table 5.2 shows the distribution of the number of errors, when
variable xi is eliminated for 1 ≤ i ≤ 12. In this case, the
algorithm found the variable x12 that causes the number of
errors to be minimum. The average number of errors is 56.08,
while the standard deviation is 10.75. The expected number
of errors derived from Theorem 4.1 is E1(f) = 41.46. From
Theorem 4.4, the 95.45% confidence interval is [28.58, 54.34].
Note that the number of errors obtained by the experiment is
39, which is in the confidence interval.

RANDOM4000 and SPAM MAIL FILTER were generated
randomly. For these functions, experimental results are in
the 95.45% confidence intervals. Especially in the case of
SPAM MAIL FILTER, the range of errors resulting from the
elimination of a single variable falls within a narrow interval
[14, 30].

Other functions are not random. For many of them, ex-
perimental results were in the 95.45% confidence intervals.
However, for 4350WORDS, CONNECT-4, and F-MNIST,
experimental results were larger than μ + 2σ. Especially, in
the case of CONNECT-4, the range of errors resulting from
the elimination of a single variable falls within a large interval
[357, 1307]. Thus, the IID model does not apply to this
function.



VI. DATA SET

In this part, we briefly describe the data set used for the
experiment. k is the number of registered vectors prior to linear
decomposition2.

A. 4350WORDS

This function shows parts of speech3 of English words.
The original list [28] contained 5000 words. Upper case letters
were converted into lower case letters. Only the fields for word
and the part of speech were used. Some words have more than
one part of speech, but only one is selected. For example, the
parts of speech of ‘access’ are n (noun) and v (verb), but we
selected only n. In this way, we removed duplicated words, and
had a list of k = 4350 unique words. Most words consist of
at most 14 characters. Only the first 15 characters were used.
Each character was represented by the minimum-length code
(5 bits). Thus, the number of variables is n = 5× 15 = 75.

B. CHESS3196

This function has 36 variables showing a board-descriptions
for the chess endgame, and the output showing the class: ”win”
or ”nowin” [21]. All the variables are binary, except for two
variables; one takes 3 values, and the other takes 4 values. All
the variables were represented by a 1-hot code4, and we had
a function with n = 75, m = 2, and k = 3196.

C. CIFAR32× 32

CIFAR-10 consists of colored images [26] of 32×32 pixels.
Only the blue component of the training set was binarized
using the most significant bits. Also, only the first two classes
were used: airplane and automobile. In this way, we had a
classification function with n = 32× 32 = 1024, m = 2, and
k = 9930.

D. COMPANIES

This function maps the telephone numbers of k = 3700
Japanese companies [23] into the stock exchange. There are
m = 9 different stock exchanges. 1) Tokyo 1st; 2) Tokyo 2nd;
3) Tokyo Mothers; 4) Sapporo; 5) Nagoya; 6) Fukuoka; 7)
JASDAQ; 8) REIT; and 9) Foreign. The telephone numbers are
represented by 9-digit decimal numbers. These numbers were
converted into binary numbers of 30-bits. Thus, the number
of inputs is n = 30.

E. CONNECT-4

This function classifies the positions of the game
CONNECT-4 into three categories: (1) player X win, (2)
player Y wins, or (3) draw [16]. Each variable takes 3 values:
empty, X, or Y. There are 6 × 7 = 42 positions. Each
variable is represented by a 1-hot code. Thus, in this function,

2A linear decomposition reduces the number of variables, and often
produces duplicated registered vectors.

3One of the grammatical groups, such as article, noun, pronoun, verb,
auxiliary verb, adjective, adverb, preposition, conjunction, and interjection,
into which words are divided according to their use.

4Experimental results show that when the value of a variable is small,
encoding by a 1-hot code results in fewer variables [12].

n = 3 × 42 = 126, m = 3 and k = 67557. We assume that
each player plays optimally.

F. FASHION-MNIST
This data set shows sample images of Zalando’s [24] fashion

items. Each image is a bit map of n = 28× 28 = 784 pixels.
Originally each pixel was represented by an 8-bit number (i.e.,
256-valued grayscale). To reduce the size of data, each pixel
was represented by a binary bit, where threshold=32. Similar
to the case of MNIST, the data set consists of about 60, 000
training images, about 6000 images for each article. There are
m = 10 items. In this case, n = 784, m = 10, and k = 59954.

G. LETTER-RECOGNITION
This function identifies each of a large number of black-

and-white rectangular pixel displays as one of the 26 capital
letters in the English alphabet [17]. The character images
were based on 20 different fonts and each letter within
these 20 fonts was randomly distorted to produce a file of
k = 20, 000 unique stimuli. Each stimulus was converted into
16 primitive numerical attributes (statistical moments and edge
counts) which were then scaled to fit into a range of integer
values from 0 through 15. To represent the attributes, a 1-
hot code was used, so the number of the binary variables is
n = 16× 16 = 256. The number of the classes is m = 26.

H. MNIST-2CLASS
This function appeared in Example 3.1 [3], [13].

I. MNIST 14× 14

This data is derived from MNIST 28×28. These bitmaps are
divided into non-overlapping blocks of 2×2 and the maximum
value of pixels are stored in each block. Finally, the values
of pixels were binarized. In this case, n = 14 × 14 = 196,
m = 10, and k = 58191 [27].

J. MNIST 28× 28

MNIST [25] is a data set of handwritten digits. The training
set consist of 6 × 104 images. Each image is a bit map of
28 × 28 pixels. Originally, each pixel is represented by an
8-bit number (i.e., a grayscale image of 256 values), but we
converted it into binary number by setting the threshold 965.
In this case, n = 28× 28 = 784, m = 10, and k = 59981. In
this process, we removed duplicated data.

K. POKER HAND
This function produces a poker hand. Each hand consists

of five playing cards drawn from a standard deck of 52. Each
card is described by two attributes (suit and rank). Thus, the
number of variables is N = 10: five of which take four values
(Hearts, Spades, Diamonds, Clubs); and five of which take 13
values (Ace, 2, 3, ... , Queen, King). Thus, the total number
of binary variables is n = (5×4)+(5×13) = 85. The output
denotes a poker hand, and the number of classes is m = 10:
(1) Nothing, (2) One pair, (3) Two pairs, (4) Three of a kind,
(5) Straight, (6) Flush, (7) Full house, (8) Four of a kind, (9)
Straight flush, and (10) Royal flush. [20].

5We found this threshold by experiments.



L. RANDOM4000

This function was generated from 4000 distinct random
vectors of 30 bits. They are partitioned into m = 4 sets, each
consists of 1000 vectors. From this, a classification function
with n = 30 inputs, four outputs, and k = 4000 registered
vectors was generated.

M. SPAM MAIL FILTER

This function shows a SPAM E-mail filter with the follow-
ing specification:

• The number of IP addresses in the white list: 10000.
• The number of IP addresses in the black list: 10000.
• The number of bits to represent IP addresses: 128.
• The function takes two values: spam (f = 1) or (f = 0)

not.
• The bit patterns of IP addresses are random.

N. SPLICE

This function classifies the gene sequences (DNA) into
three classes: (1) donor, (2) acceptor, (3) neither. Originally,
it contained 3191 instances, but 16 ambiguous instances were
removed. Each variable takes 4 values: (1) A, (2) G, (3) T,
and (4) C. Finally, conflicting data was removed to produce
k = 3, 174 instances. In this case, we use n = 4× 60 = 240
variables to represent the function. [19].

VII. RELATED WORKS

An approximate memory-based synthesis for index gen-
eration functions [10] was considered in [5]. Note that an
index generation function is a special case of a classification
function, where k = m. This method tries to eliminate a
set of registered vectors to reduce the number of variables.
Experimental results for up to 8-variable irreducible index
generation functions are shown.

VIII. CONCLUSION AND COMMENTS

This paper considered an approximate logic synthesis for
classification functions. Let p be the number of variables as the
result of linear decomposition. To further reduce the memory
size, an approximate logic synthesis is considered. We derived
a method to estimate the number of errors, when the number
of variables is p − 1 and p − 2. The main findings are as
follows:

1) With p, the number of variables in an irreducible classi-
fication function, and ki the number of registered vectors
�a such that f(�a) = i, we can estimate the number of
errors for approximate logic synthesis.

2) The expected number of errors for the (p− 2)-variable
realization is about three times of that for the (p − 1)-
variable realization.

3) For most functions, the experimental results are within
the 95.45% confidence intervals.

4) By sacrificing a little accuracy, the circuit size can be
greatly reduced.

This method is useful to find a tradeoff between the number
of errors and the circuit size.

In this paper, we assumed that the part G in Fig. 1.1 is
implemented by a memory. However, a multi-level LUT circuit
can be also used to implement G.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for
Scientific Research of the JSPS. The author thanks Dr. Alan
Mishchenko and Prof. Jon T. Butler for discussion. Review-
ers’s comments improved the presentation of the paper.

REFERENCES

[1] R. L. Ashenhurst, “The decomposition of switching func-
tions,” International Symposium on the Theory of Switching,
pp. 74-116, April 1957.

[2] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[3] S. Chatterjee,“Learning and memorization,” International
Conference on Machine Learning (ICML 2018), 2018,
pp. 754-762.

[4] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “ Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, Vol. 86, No. 11, pp. 2278-2324, November 1998.

[5] T. Mazurkiewicz, “Approximate memory-based logic synthe-
sis of index generation functions using linear decomposition,”
ISMVL, 2022, online, pp. 145-150.

[6] E. I. Nechiporuk, “On the synthesis of networks using linear
transformations of variables,” Dokl. AN SSSR, vol. 123, no. 4,
December 1958, pp. 610-612 (in Russian).

[7] S. Rai et al., “Logic synthesis meets machine learning: Trading
exactness for generalization,” DATE2021, pp. 1026-1031.

[8] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[9] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[10] T. Sasao, Index Generation Functions, Morgan & Claypool,

October 2019.
[11] T. Sasao, “Reduction methods of variables for large-scale

classification functions,” International Workshop on Logic and
Synthesis (IWLS-2020), July 27-29, 2020, pp. 82-87.

[12] T. Sasao, and J. T. Butler, “Linear Decompositions for multi-
valued input classification functions,” ISMVL-2021. May
2021, pp. 13-18.

[13] T. Sasao, Classification Functions for Machine Learning and
Data Mining, Springer Nature, August 2023.

[14] I. Scarabottolo, et. al., “Approximate logic synthesis: A sur-
vey,” Proceedings of the IEEE, Vol. 108, No. 12, pp. 2195-
2213, December 2020.

[15] https://archive.ics.uci.edu/datasets
[16] https://archive.ics.uci.edu/dataset/26/connect+4
[17] https://archive.ics.uci.edu/dataset/59/letter+recognition
[18] https://archive.ics.uci.edu/dataset/80/optical+recognition+of

+handwritten+digits
[19] https://archive.ics.uci.edu/dataset/69/molecular+biology+splice

+junction+gene+sequences
[20] https://archive.ics.uci.edu/dataset/158/poker+hand
[21] https://archive.ics.uci.edu/ml/datasets/Chess+
[22] https://en.wikipedia.org/wiki/Independent and identically

distributed random variables
[23] https://str.toyokeizai.net/magazine/shikiho cd/
[24] https://tech.zalando.com
[25] http://yann.lecun.com/exdb/mnist/
[26] https://www.cs.toronto.edu/ kriz/cifar.html
[27] https://www.cs.waikato.ac.nz/ml/index.html
[28] http://www.wordfrequency.info


