QRMDD を用いた論理関数の表現法について

永山 \mathbb{Q}^1 笹尾 勤^{2,3} 井口 幸洋¹ 松浦 宗寬²

1明治大学理工学部

2九州工業大学 情報工学部

³九州工業大学マイクロ化総合技術センタ

あらまし:本論文では、QRMDD(k)(Quasi-Reduced Multi-valued Decision Diagram with k bits)を用いた論理関 数の表現に関して、以下のことを示す. ベンチマーク関数における、QRMDD(k)の節点数とkの値の関係. また QRMDD(k)の節点数の上界および、その上界と乱数関数をQRMDD(k)で表現したときの節点数の差. QRMDD(k) の総メモリ量、評価時間、および面積時間複雑度. $k = 3 \sim 6$ の時、面積時間複雑度が最小となること. 和文キーワード: QRMDD、面積時間複雑度、乱数関数.

Representations of Logic Functions using QRMDDs

Shinobu NAGAYAMA¹, Tsutomu SASAO^{2,3}, Yukihiro IGUCHI¹ and Munehiro MATSUURA²

¹ Department of Computer Science, Meiji University

² Department of Computer Science and Electronics, Kyushu Institute of Technology

³ Center of Microelectronic Systems, Kyushu Institute of Technology

Abstract: In this paper, we consider quasi-reduced multi-valued decision diagrams with k bits (QRMDD(k)s) to represent logic functions. We will show relations between the number of nodes in QRMDD(k)s and values of k for benchmark functions; an upper bound on the number of nodes in the QRMDD(k), difference between the upper bound and the number of nodes in the QRMDD(k)s for random functions; and the amount of total memory, evaluation time, and area-time complexity for QRMDD(k)s. Experimental results using standard benchmark functions show that the area-time complexity takes its minimum when k is between 3 and 6. Key words: QRMDD, area-time complexity, random functions.

1 はじめに

近年, ディジタルシステムが大規模化したため, 評価 が高速で, かつメモリ量が少ない論理関数の表現法が重 要となってきている [2].本論文では, QRMDD(Quasi-Reduced Multi-valued Decision Diagram)を用いた論 理関数の表現法について考察を行なう.決定図 (DD: Decision Diagram)を用いた論理関数の表現法として, BDD(Binary Decision Diagram) [1, 5] や MDD(Multivalued Decision Diagram) [3, 8, 10, 12] が知られてい る.特に MDD は, 節点数を少なくできる.またメモリ アクセス回数を BDD の場合の k 分の 1 に削減できる [10].本論文では, QRMDD(k)を表現するためのメモリ 量やメモリアクセス回数と k の値との関係を示す.

2 諸定義

本節では、QRMDD(Quasi-Reduced Multi-valued Decision Diagram) を定義し、多出力関数の表現法、および 本論文の実験に用いたベンチマーク関数を示す.

2.1 QRMDD

定義 2.1 各非終端節点が 2^k 個の枝を持つ RMDD (Reduced Multi-valued Decision Diagram)を RMDD(k) と表記する. 特に k = 1 のとき, RMDD(1) は RBD-D(Reduced ordered Binary Decision Diagram)を表す.

定義 2.2 *DD(Decision Diagram)*において,根から終端 節点までの経路を *DD*のパスという. このときパス上の 枝数をパス長という.

定義 2.3 *DD* において, 終端節点を含んだ節点の総数を *DD* の節点数といい, *nodes*(*DD*) と表記する.

定義 2.4 MDD(k)の任意のパス上に、全ての X_i (i = 1, 2, ..., u) がこの順に現れるとき、この MDD(k)を QRMDD(k)という.

QRMDD(k) の任意のパスのパス長は入力変数の個数 に等しい. *RMDD* は冗長な節点を含まない *MDD* であ り, *QRMDD*は *RMDD* に冗長な節点を付け加えた *MDD* なので, *RMDD* と *QRMDD* の節点数に関して, 関係

 $nodes(RMDD(k)) \le nodes(QRMDD(k))$

が成立する.

図 2.2: QRMDD(2) の例

定義 2.5 入力変数を $X = (X_1, X_2, ..., X_u)$ とする. 関数 f(X) を表現する QRMDD を考える. 変数 X_i における QRMDDの節点数を QRMDDの X_i における幅といい, width(QRMDD(k), i) で表す.

*QRMDD(k)*の節点数は,

$$nodes(QRMDD(k)) = \sum_{i=1}^{u} width(QRMDD(k), i)$$

で計算できる.

例 2.1 関数

 $f = x_1 x_2 x_3 \lor x_2 x_3 x_4 \lor x_3 x_4 x_1 \lor x_4 x_1 x_2$

を表現する *RBDD*を図 2.1(*a*) に, *RMDD*(2) を図 2.1(*b*) に, *QRMDD*(2) を図 2.2 に示す. 図 2.1(*a*) の *RBD*-*D*で実線は 1-枝, 破線は 0-枝を示す. また, 図 2.1(*b*) の *RMDD* で $X_1 = (x_1, x_2), X_2 = (x_3, x_4)$ である. *nodes*(*RBDD*) = 8, *nodes*(*RMDD*(2)) = 5, そして *nodes*(*QRMDD*(2)) = 6 である. また width (*QRM*-*DD*(2), 2) = 3 である. (例終り) 論理回路は、通常多出力である. 各出力を独立に表現す ると、ほとんどの場合、表現が大きくなりすぎ効率が悪い. 従って、能率の良い表現法の考案が重要である. 多出力 関数を、 $F = (f_0, f_1, \dots, f_{m-1}) : B^n \to B^m, B = \{0, 1\}$ と定義する. ここで、n は論理回路の入力数、m はその 出力数を表す. BDD を用いた多出力関数の表現法は、 いくつか知られているが [11, 14, 15, 16]、本論文では、 ECFN(Encoded Characteristic Function for Non-zero output)[17] を用いる. 以下 RBDD は、ECFN を表現す る BDD を示し、RMDD と QRMDD は、この RBDD よ り生成されたものと仮定する.

2.3 ベンチマーク関数

本論文では、表 2.1に示す 131 個のベンチマーク関数 を用いて実験を行なった.表中の n と m は、それぞれ 入力数、出力数を表す.また表中の sequential 以降のベ ンチマーク関数は、本来、順序回路を表現する関数であ る.しかし、本論文では、組合せ回路のみを対象として いるので、順序回路の FF(Flip-Flop)を取り除き、それ を入出力とした組合せ回路に変換した.本来の関数名に *c*を付け加え、変換後の組合せ回路の関数名にしている. ECFN の符号化や変数順序最適化は [18] の結果を用い ている.表 2.1の各関数の各実験データは論文のページ 数の制限のために割愛する.

3 QRMDD(k)の節点数

3.1 一般の論理関数

任意の論理関数に対して,次の二つの定理が成立する. 定理 3.1 任意の n 入力論理関数は,節点数が高々

$$2^{n-r} - 1 + \sum_{i=0}^{r} 2^{2^{i}}$$

の *QRBDD* で表現できる. ここで r は,

$$n-r \ge 2^r$$

を満足する最大の整数である.

定理 3.2 任意の n 入力論理関数は, 節点数が高々

$$\frac{2^{sk}-1}{2^k-1} + \sum_{i=0}^{t-1} 2^{2^{n-(s+i)k}} + 2$$

表 2.1: 実験に用いたベンチマーク関数

Name	n	m	Name	n	m	Name	n	m
C432	36	7	frq1	28	3	soar	83	94
C499	41	32	frq2	143	139	spla	16	46
C880	60	26	i1	25	16	$t\hat{1}$	21	23
C1355	41	32	i2	201	1	t2	17	16
C1908	33	25	i3	132	6	table5	17	15
C2670	233	140	i4	192	6	tcon	17	16
C3540	50	22	i5	133	66	term1	34	10
C5315	178	123	i6	138	67	ti	47	72
C7552	207	108	i7	199	67	too_large	38	3
accpla	50	69	i8	133	81	ts10	22	16
al2	16	47	i9	88	63	ttt2	24	21
alcom	15	38	i10	257	224	unreg	36	16
a pex 1	45	45	ibm	48	17	vda	17	- 39
a pex 2	39	3	in1	16	17	vg2	25	8
a pex3	54	50	in2	19	10	v t x 1	27	6
a pex 5	117	88	in3	35	29	x1	51	35
a pex 6	135	- 99	in4	32	20	x3	135	- 99
a pex7	49	37	in5	24	14	x4	94	71
$b\hat{2}$	16	17	in6	-33	23	x1dn	27	6
b3	32	20	in7	26	10	x2dn	82	56
b4	-33	23	jbp	36	57	x6dn	- 39	5
b9	41	21	k2	45	45	x7dn	66	15
bc0	26	11	lal	26	19	x9dn	27	7
bca	26	46	mainpla	27	54	x parc	41	73
bcb	26	39	mark1	20	31	seque	ntial	
bcc	26	45	misex2	25	18	$s208_{c}$	18	9
bcd	26	38	misq	56	23	$s298_{c}$	17	20
c8	28	18	mish	94	43	$s344_{c}$	24	26
cc	21	20	misj	35	14	$s349_{c}$	24	26
chkn	29	7	mlp10	20	20	$s382_c$	24	27
cht	47	36	mux	21	1	$s400_{c}$	24	27
cm150a	21	1	my_adder	-33	17	$s420_{c}$	34	17
comp	32	3	opa	17	69	$s444_{c}$	24	27
cordic	23	2	pair	173	137	$s510_{c}$	25	13
count	35	16	pcle	19	9	$s526_c$	24	27
cps	24	109	pcler8	27	17	$s641_{c}$	54	43
$\hat{da} lu$	75	16	pdc	16	40	$s713_{c}$	54	42
des	256	245	pm1	16	13	$s820_{c}$	23	24
dk48	15	17	$\hat{r}ckl$	32	7	$s832_{c}$	23	24
duke2	22	29	rot	135	107	$s838_{c}$	66	- 33
e64	65	65	sct	19	15	$s1196_{c}$	32	32
ex4	128	28	seq	41	35	$s1423_{c}$	91	79
example 2	85	66	$sh\hat{i}ft$	19	16	$s5378_{c}$	214	228
exep	30	63	signet	39	8	$s9234_{c}$	247	250

の *QRMDD(k)* で表現できる. ここで *s*, *t* は

$$s \ge \frac{n-r}{k},$$
$$t \ge \frac{n}{k} - s$$

を満足する最小の整数である.

定理 3.1, 3.2の証明は、付録に添付する.

3.2 ベンチマーク関数

表 3.1は表 2.1の各ベンチマーク関数を QRMDD(*k*) で表現した場合の *k* と節点数の関係を示す.表 3.1の *ave* は, QRMDD(1) の節点数を 1.00 としたときの算術平均 を表し, *stdv* は,標準偏差を表す.いま,

表 3.1: k と QRMDD(k) の節点数の関係

		k						
	1	2	3	4	5			
ave	1.00	0.50	0.33	0.25	0.20			
stdv	0.000	0.014	0.007	0.013	0.009			

表 3.2: $\eta \ge 0.1$ の関数

Name	回路の種類	Name	回路の種類
C499	誤り訂正回路	my_adder	加算回路
C1908	誤り訂正回路	pcle	制御回路
comp	比較回路	tcon	制御回路
i3	制御回路	vg2	制御回路
in1	制御回路	vtx1	制御回路
mlp10	乗算回路	x1dn	制御回路

$$\eta = \left| 1 - \frac{k \cdot nodes(QRMDD(k))}{nodes(QRMDD(1))} \right|$$

とおくと、表 2.1に示す 131 個のベンチマーク関数のうち 119 個の関数において、 $\eta < 0.1$ が成立している. つまり多くの関数で

性質 3.1

$$nodes(QRMDD(k)) \simeq \frac{1}{k}nodes(QRMDD(1))$$

が成立している. 残り 12 個の関数では, $\eta \ge 0.1$ である. 12 個の関数を表 3.2に示す. また, 関数の入出力数に対 して, k が大きいと η が大きくなり性質 3.1は成立しな い. 従って, 入出力数が小さい関数は本論文の実験に用 いていない.

3.3 乱数関数

性質 3.1が乱数関数に対して成立しているか否かを調 べるために, *n* 入力乱数関数を生成した. 各 *n* に対して, 2^{*n*-1} 個の最小項をランダムに生成した.

表 3.3は, n 入力乱数関数を QRMDD(k) で表現した ときの節点数の平均値 (サンプル数 10) を示している. そのときの偏差は, 表にのせていないが, 平均値の ±2% 以内に収まっている. 表 3.4は, 定理 3.2により計算した QRMDD(k) の節点数の上界を示す.

表 3.5は, *n* 入力乱数関数の QRMDD(1) に関する実 験値と計算値の差の割合

$$\gamma_{(\%)} = \frac{ \ \text{thp} \ \underline{b} - \mathbf{x} \ \mathbf{b} \ \underline{b} \ \underline{b}$$

表 3.3: 乱数関数を表現する QRMDD(k) の節点数の平 均値

	k							
n	1	2	3	4	5			
10	249.4	103.0	79.0	35.0	35.0			
11	439.1	253.2	91.0	181.2	39.0			
12	756.0	358.5	298.5	274.5	51.0			
13	1294.8	598.6	589.2	279.0	286.6			
14	2318.0	1376.1	603.0	291.0	1052.1			
15	4343.1	1627.0	843.0	531.0	1059.0			
16	8338.5	5348.5	4556.5	4240.5	1063.0			
17	16167.3	5723.0	4699.0	4375.0	1075.0			
18	31157.9	19975.9	4939.0	4387.0	1315.0			
19	58838.4	22107.0	30480.4	4627.0	26852.4			
20	107222.3	63272.3	37467.0	45780.3	33827.0			

表 3.4: QRMDD(k) の節点数の上界

n	1	2	3	4	5
10	277	103	79	35	35
11	533	347	91	275	39
12	789	359	331	275	51
13	1301	603	591	279	291
14	2325	1383	603	291	1060
15	4373	1627	843	531	1059
16	8469	5479	4687	4371	1063
17	16661	5723	4699	4375	1075
18	33045	21863	4939	4387	1315
19	65813	22107	37455	4627	33828
20	131349	87399	37467	69907	33827

を示している. 表 3.5から, r が変化する付近では γ は 大きく, それ以外では, 小さいことがわかる. 表 3.3より 乱数関数に対しては性質 3.1は成立しないことがわかる. また, 一般の関数に対しても性質 3.1は, 成立しない.

4 **QRMDD**(*k*)の面積時間複雑度

4.1 **QRMDD**(*k*) を表現するためのメモリ量

QRMDD(k) は, $X_1, X_2, ..., X_u$ と順に変数を評価す るので, 次に評価すべき変数をカウンタで求めることが できる. そのため QRMDD(k) をメモリに格納する際, 各節点には枝が示すアドレスだけを格納すればよく, イ ンデックスを格納する必要は無い. 一方, RMDD(k) で

表 3.5: 実験値と計算値の差の割合 γ(乱数関数)

n	r	$\gamma(\%)$	n	r	$\gamma(\%)$	n	r	$\gamma(\%)$
5	1	25.24	12	3	4.81	19	3	10.60
6	2	28.11	13	3	0.48	20	4	18.37
7	2	16.42	14	3	0.30	21	4	4.50
8	2	12.00	15	3	0.68	22	4	0.37
9	2	11.07	16	3	1.54	23	4	0.00
10	2	9.96	17	3	2.96	24	4	0.00
11	3	17.62	18	3	5.71	25	4	0.01

図 4.1: QRMDD(2) の節点のデータ構造

は、次に評価すべき変数はパスによって異なるため、インデックスと各枝のアドレスを格納する必要がある.

例 4.1 図 4.1 に, *QRMDD*(2)の節点のデータ構造を示 す.また,図 4.2 に, *RMDD*(2)の節点のデータ構造を 示す. (例終り)

QRMDD(*k*) の各節点は、2^{*k*} 個の枝を持つので QRM-DD(*k*) の全節点を表現するためには、

 $2^k nodes(QRMDD(k))$

ワード必要である. 一方, RMDD(*k*) の全節点を表現す るためには,

$$(2^k+1)nodes(RMDD(k))$$

図 4.2: RMDD(2) の節点のデータ構造

表 4.1: k と QRMDD(k) の A の関係

			k		
	1	2	3	4	5
ave	1.00	0.91	1.14	1.65	2.54
stdev	0.000	0.036	0.070	0.114	0.190

ワード必要である. また, DD をメモリに格納するとき に, 各節点にアドレスを割り当る. このアドレスを指定 するためのビット数, つまり各ワードのビット数は,

 $\lceil log_2 nodes(DD) \rceil$

必要である.よって QRMDD(k) を表現するための総メ モリ量は、

 $2^k nodes(QRMDD(k)) \lceil log_2 nodes(QRMDD(k)) \rceil$

と計算できる. 一方, RMDD(*k*) を表現するための総メ モリ量は,

 $(2^{k}+1)nodes(RMDD(k)) \lceil log_2 nodes(RMDD(k)) \rceil$

で計算できる.

4.2 QMRDD(*k*) の面積時間複雑度

QRMDD(k) では k 変数を同時に評価できるので, QRMDD(k) を用いると, QRMDD(1) に比ベメモリア クセス回数を, k 分の 1 に削減できる. 一方, 必要なメモ リ量は $\frac{2^{k}}{k}$ に比例して増加する. ここでは, 面積時間複雑 度という尺度 [4, 19] を用いて QRMDD(k) における最 適な k の値を考察する.

定義 **4.1** 面積時間複雑度 (*Area-Time complexity*) とは, 計算を行うために必要な面積と時間の総合的な尺度で あり,

$$AT = (\mathbf{\overline{m}}\mathbf{\overline{h}}) \times (\mathbf{\overline{h}}\mathbf{\overline{l}})$$

および,

$$AT^2 = (\mathbf{\overline{m}}\mathbf{\overline{h}}) \times (\mathbf{\overline{h}}\mathbf{\overline{l}})^2$$

で定義する.

本論文では、面積として QRMDD(*k*) を表現するため に必要なメモリ量を考え、時間として QRMDD(*k*) を評 価するために必要なメモリアクセス回数を考える.

尺度 AT は、メモリ量とメモリアクセス数の両方が重 要視されるときに用いる. 一方、AT² は、メモリ量より 表 4.2: k と QRMDD(k) の AT の関係

		k						
	1	2	3	4	5			
ave	1.00	0.45	0.38	0.41	0.51			
stdev	0.000	0.018	0.023	0.028	0.038			

表 4.3: $k \ge \text{QRMDD}(k)$ の AT^2 の関係

		k							
	1	2	3	4	5	6	7		
ave	1.000	0.227	0.127	0.103	0.101	0.116	0.141		
stdev	0.000	0.009	0.008	0.007	0.008	0.013	0.016		

もメモリアクセス数のほうが重要視されるときに用いる. 例えば AT は,組み込みシステム [2] を構成する際の尺 度, AT² は論理シミュレータ [6, 7] を構成する際の尺度 として利用できる.

4.3 実験結果

表 2.1のベンチマーク関数に対して、QRMDD(k) を 表現するための総メモリ量 A, 尺度 AT, そして尺度 AT^2 を調べた.表 4.1に, $k \ge A$ の関係を,表 4.2に, $k \ge AT$ の関係を,そして表 4.3に, $k \ge AT^2$ の関係を示す.表の 見方は,表 3.1と同様である.

表 2.1の 131 個のベンチマーク関数において、総メモ リ量 A は、k = 2 のとき最小で、尺度 AT は、k = 3 また は k = 4 のとき最小となった. また、尺度 AT² は、k = 4~6 のときに最小となった.

4.4 解析

4.3節では、QRMDD(k) において、A、AT および AT² の値を最小にする k の値を実験的に求めた. ここでは、 性質 3.1 が成立すると仮定して、解析的に求めてみよう. 面積 A を QRMDD(k) を表現するために必要な総メモ リ量、時間 T を QRMDD(k) を評価するために必要なメ モリアクセス回数とすると

 $A = 2^k nodes(QRMDD(k)) \lceil log_2 nodes(QRMDD(k)) \rceil$

$$T = \lceil \frac{n}{k} \rceil$$

となる. ここで、性質 3.1が成立すると仮定し、nodes (QRMDD(1))=N とおくと、

$$A \simeq \frac{2^k}{k} N \lceil \log_2 \frac{N}{k} \rceil$$

を得る. 同様に,

$$AT \simeq \frac{2^k n}{k^2} N \lceil \log_2 \frac{N}{k} \rceil,$$
$$AT^2 \simeq \frac{2^k n^2}{k^3} N \lceil \log_2 \frac{N}{k} \rceil$$

が成立する. *N* は, QRBDD の節点数で, 数 100 以上で あり, 一方 *k* = 1 ~ 7 程度なので, 近似式

$$\left\lceil log_2 N - log_2 k \right\rceil \simeq \left\lceil log_2 N \right\rceil$$

を成立する. これより, A, AT と AT² の式は,

$$A \simeq \frac{2^k}{k} C_0,$$
$$AT \simeq \frac{2^k}{k^2} C_1,$$
$$AT^2 \simeq \frac{2^k}{1^2} C_2$$

と簡単化できる. ここで, C_0 , C_1 , C_2 は k の値に依存しない数である. このとき, A, AT および AT^2 の値を最小にする k の値は, それぞれ k = 2, k = 3 および k = 4である.

5 結論とコメント

本論文では、QRMDD(k)(Quasi-Reduced Multi-valued Decision Diagram using k bits)を用いた論理関数の表 現法に関して以下のことを考察した. 1)QRMDD(k)の 節点数の上界を求める公式を導いた. また、乱数関数 を多数生成し、QRMDD(k)で表現したときの節点数を 求め、公式との差について考察した. 2)多くのベンチ マーク関数において、性質 3.1が成立することを示した. 3)QRMDD(k)の総メモリ量、および評価時間は kの 値に依存するため、使用目的に応じた最適なkの値を求 めることが必要である.本論文では、実験と考察により $k = 3 \sim 6$ のとき面積時間複雑度が最小になることを示 した.

謝辞

本研究は一部,日本学術振興会,科学研究費補助金に よる.

参考文献

- P. Ashar and S. Malik, "Fast functional simulation using branching programs," *ICCAD*'95, pp. 408–412, Nov. 1995.
- [2] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-Vincentelli, E. M. Sentovich, and K. Suzuki, "Synthesis of software programs for embedded control applications," *IEEE Trans. CAD*, Vol. 18, No. 6, pp.834-849, June 1999.
- [3] B. Becker and R. Drechsler, "Efficient graph based representation of multivalued functions with an application to genetic algorithms," *Proc. of International Symposium on Multiple Valued Logic*, pp. 40-45, May 1994.
- [4] R. P. Brent and H. T. Kung, "The area-time complexity of binary multiplication," *Journal of the ACM*, Vol. 28, No. 3, pp. 521-534, July 1981.
- [5] R. E. Bryant, "Graph-based algorithms for boolean function manipulation," *IEEE Trans. Comput.*, Vol. C-35, No. 8, pp. 677–691, Aug. 1986.
- [6] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno "A hardware simulation engine based on decision diagrams," Asia and South Pacific Design Automation Conference (ASP-DAC'2000), Jan. 26-28, Yokohama, Japan.
- [7] Y. Iguchi, T. Sasao, M. Matsuura, "Implementation of multiple-output functions using PQMDDs," *International Symposium on Multiple-Valued Logic*, pp.199-205, May 2000.
- [8] T. Kam, T. Villa, R. K. Brayton, and A. L. Sagiovanni-Vincentelli, "Multi-valued decision diagrams: Theory and Applications," *Multiple-Valued Logic*, 1988, Vol. 4, No. 1-2, pp. 9–62, 1998.
- [9] H.-T. Liaw, and C.-S. Lin. "On the OBDDrepresentation of general Boolean function," *IEEE Transactions on Computers*, Vol. 4, No. 6, pp. 661– 664, June 1992.
- [10] P. C. McGeer, K. L. McMillan, A. Saldanha, A. L. Sangiovanni-Vincentelli, and P. Scaglia, "Fast discrete function evaluation using decision diagrams," *ICCAD*'95, pp. 402–407, Nov. 1995.
- [11] S. Minato, N. Ishiura, and S. Yajima, "Shared binary decision diagram with attributed edges for efficient Boolean function manipulation," *Proc. 27th ACM/IEEE Design Automation Conf.*, pp. 52–57, June 1990.
- [12] D. M Miller, "Multiple-valued logic design tools," Proc. of International Symposium on Multiple Valued Logic, pp. 2–11, May 1993.
- [13] T. Sasao, "FPGA design by generalized functional decomposition," (Sasao ed.) Logic Synthesis and Optimization, Kluwer Academic Publishers, 1993.
- [14] T. Sasao and M. Fujita (ed.), Representations of Discrete Functions, Kluwer Academic Publishers 1996.

図 A.1: BDD の分割

- [15] T. Sasao and J. T. Butler, "A method to represent multiple-output switching functions by using multivalued decision diagrams," *IEEE International Symposium on Multiple-Valued Logic*, pp. 248-254, Santiago de Compostela, Spain, May 29-31, 1996.
- [16] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999.
- [17] T. Sasao, "Compact SOP representations for multipleoutput functions: An encoding method using multiple-valued logic," 31st International Symposium on Multiple-Valued Logic, Warsaw, Poland, May 22 -24, 2001, pp207-211.
- [18] T. Sasao, M. Matsuura, and Y. Iguchi, "Cascade realization of multiple-output function and its application to reconfigurable hardware," *International Workshop* on Logic and Synthesis, Lake Tahoe, June 2001.
- [19] C. D. Thompson, "Area-Time complexity for VLSI," Ann. Symp. on Theory of Computing, May 1979.

A 付録

A.1 定理 3.1の証明

定義 A.1 n 入力論理関数を表現する *QRBDD* (*Quasi-Reduced ordered Binary Decision Diagram*)を図 A.1の ように上下に分割する.分割した上の部分を上段部とよび、下の部分を下段部とよぶ.また,上段部は,n - r 個の変数 $X_1 = (x_1, x_2, ..., x_{n-r})$ をもち、下段部は r 個の変数 $X_2 = (x_{n-r+1}, ..., x_n)$ をもつとする.

定理 3.1の証明 n入力論理関数を表現する完全二分木 の非終端節点数は、 $2^n - 1$ である. 下段部では同じ関 数を表現する節点は共有するため、幅が狭くなる. r が $2^{n-r} \ge 2^{2^r}$ を満たす最大の整数のとき、BDD の節点数 は最小となる [9]. ここで下段部を考えると、最大 2^{2^r} 個 のr入力論理関数を表現可能である. これらの全ての関 数を表現したとき下段部の節点数は最大となる. このとき BDDは,

$$f(X_1, X_2) = \bigvee_{\vec{a}_i \in B^{n-r}} X_1^{\vec{a}_i} f(\vec{a}_i, X_2)$$

の形で論理関数を表現している. ここで $X_1 = (x_1, x_2, ..., x_{n-r})$ かつ, $X_2 = (x_{n-r+1}, x_{n-r+2}, ..., x_n)$ である. また,

$$X_1^{\vec{a}_i} = \begin{cases} 1 & (X_1 = \vec{a}_i) \\ 0 & (otherwise) \end{cases}$$

である. 上段部で $X_1^{\vec{a}_i}$ を実現し,下段部で $f(\vec{a}_i, X_2)$ を 実現する. $f(\vec{a}_i, X_2)$ は, r 変数関数なので高々 2^{2^r} 種類 あればよい.下段部では,終端節点から上に r 個の変数 までの各 i において, 2^{2^i} 個の関数を実現すれば十分で ある. 従って QRBDD の節点数は

$$2^{n-r} - 1 + \sum_{i=0}^{r} 2^{2^{i}}$$

個あれば十分である.

(証明終り)

A.2 定理 3.2の証明

定理 3.2を証明するために、次の補題を利用する.

補題 A.1 n入力論理関数をf(X), $X = (x_1, x_2, \dots, x_n)$ とする. $f(X)=f(X_1, X_2, \dots, X_u)$ を,

$$f(X) = g_i(h(X_1, X_2, \dots, X_i), X_{i+1}, \dots, X_u).$$

と分解したときの列複雑度を μ_i , i = 1, 2, ..., uとする. ただし, $u = \lceil \frac{n}{k} \rceil$ である. fを実現する QRMDD(k)の 節点数は

$$nodes(QRMDD(k)) = \sum_{i=1}^{u} \mu_i$$

となる.

証明 [13, 14] より QRMDD(k)の変数 X_i における幅 は、列複雑度 μ_i に等しいことがわかる.このことと、定 義 2.5より補題の成立は明らかである. (証明終り)

定理 **3.2**の証明 *n*入力論理関数を表現する QRMDD(*k*) の節点数は、補題 A.1より、繰り返し関数分解したとき の列複雑度の総和となる. QRBDD の上段部では、*s* 段に分解される. このとき の列複雑度 $\mu_1, \mu_2, \ldots, \mu_s$ は、各々 $1, 2^k, 2^{2k}, \ldots, 2^{sk}$ と なり、これは、初項 1、公比 2^k の等比数列である.

QRBDD の下段部では、t 段に分解される. 下段部で も、節点数は各列複雑度、すなわち QRBDD における、 対応する変数の幅の総和により求められる. $n \neq (s+t)k$ のとき、変数 X_u は、k 入力とならない. そのため、u 段 目は別に計算する. 2 値論理関数なので $\mu_u = 2$ となる. QRMDD(k) の節点数は、

$$\frac{2^{sk} - 1}{2^k - 1} + \sum_{i=0}^{t-1} 2^{2^{n-(s+i)k}} + 2$$

個あれば十分である.

(証明終り)