
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

覃 輝† 笹尾 勤† 井口 幸洋††

† 九州工業大学情報工学部電子情報工学科 〒 ��������福岡県飯塚市大字川津 �����

†† 明治大学理工学部情報科学科 〒 �������� 神奈川県川崎市多摩区東三田 �����

	
��
�� †�
���
���
����������������������� ††���� ������������������� †††
!���
������
�
������

� ������ �� �	
 	���
����� ������� ���� ������� ��
�

����� ������� �����  ���

Hui QIN†, Tsutomu SASAO†, and Yukihiro IGUCHI††

† "���������  # $ ������ %�
���� ��& 	����� �
��� '����� (���
����  # )���� � !�

������ '�*�+�� (
+���� ,��� ��� �������� -����

†† "���������  # $ ������ %�
����� .�
�
 /�
0���
��

������ 1
!��
�
��� )������ '�*����
� '���!�*�� �������� -����

	
��
�� †�
���
���
����������������������� ††���� ������������������� †††
!���
������
�
������

Abstract This paper presents a partial-rolling architecture for an AES encryption processor. By using a look-up table ring

and pipeline techniques, the proposed architecture reduces the amount of memory by 75% while maintaining the memory

efficiency (i.e., throughput divided by the size of memory for core). We implemented two architectures: AES-4SM and

AES-8SM on Altera Stratix FPGA. The AES-4SM achieved 5.61 G-bit/s throughput by using 20 memory blocks (M4Ks),

and the AES-8SM achieved 10.49 G-bit/s throughput by using 40 M4Ks. We also implemented the unrolling architecture that

achieves 20.48 G-bit/s throughput by using 80 M4Ks on the same FPGA. Compared with the unrolling implementation, the

AES-4SM and the AES-8SM improved the memory efficiency by 10.9% and 18.2%, respectively, and reduced the amount of

the memory blocks by 75% and 50%, respectively. The proposed implementation AES-8SM has an higher memory efficiency

than both the fastest unrolling implementation and the fastest rolling implementation designed by other group. The proposed

implementation fills gap between the rolling and unrolling implementations, and fits on less expensive FPGA.

Key words AES encryption, LUT ring, FPGA

1 Introduction

The Advanced Encryption Standard (AES) was accepted as a

FIPS (Federal Information Processing Standards) standard in Nov.

2001 [1]. Since then, many AES implementations using ASICs or

FPGAs have been reported. Some focus on the small chip area

by using the rolling architecture in Figure 2(a) [2], [3], [4]. Oth-

ers focus on high throughput by using the unrolling architecture in

Fig. 2(b). To achieve a high throughput, partition of each round

by inserting pipeline registers is necessary. However, this will in-

crease the cycles (or stages) in the process of the whole AES rounds.

For example, Saggese et al. [5] achieved 20.3 Gbps with 50 cycles,

while Zambreno et al. [6] achieved 23.50 Gbps with 30 cycles.

In this paper, to achieve a high throughput with small area, we

used the look-up table (LUT) ring architecture to perform partial-

rolling in the round while adopting the pipeline technique. The rest

of the paper is organized as follows: Section 2 explains the AES

algorithm. Section 3 presents conventional AES implementation.

Section 4 introduces the AES design based on LUT ring. Section 5

presents the AES implementation using an FPGA. Section 6 shows

the experimental results. And finally, Section 7 concludes the paper.

2 AES Algorithm

The AES algorithm is based on arithmetic in a finite Galois field,

GF(28), and is a symmetric block cipher that encrypts 128-bit plain

text data with a 128-bit, 192-bit, or 256-bit cipher key [1]. In this

paper, we focus on the AES encryption using a 128-bit key shown in

Fig. 1 which requires 11 rounds (i.e., logic operations). Each round

operates on a state, a 4�4 matrix of 8-bit values, and involves up to

four basic transformations:

— 1 —



    128-bit
PLAIN T EXT

Round 1

Round 10

Round 9

    128-bit
CIPHER T EXT

KEY EXPANSION

    128-bit
      KEY

Inner T ransform ations

SubBytes

ShiftRow s

MixColum ns

AddRoundKey

Input Data

Output Data

Round Key

Round Key0

Round Key1

Round Key9

Round Key10

Round 0

Fig. 1 Architecture of AES encryption with 128-bit key.

� SubBytes - Replaces each byte of the data block with another

byte by using an S-box lookup table. The contents of the S-box is

the multiplicative inverse in GF (28), combined with an affine per-

mutation over GF(2).
� ShiftRows - Cyclically shifts i bytes of the state in each row,

where i is the row number.
� MixColumns - Transforms each column of the matrix by

multiplying it with a constant GF(28) polynomial, by using the same

four-row matrix organization.
� AddRoundKey - Adds the round key to the state using a bit-

wise XOR operation.

The first round performs only the AddRoundKey transformation.

The middle 9 rounds perform all the four transformations, while the

final round performs the ShiftRows, SubBytes, and AddRoundKey,

omitting the MixColumns transformation.

The AES encryption processor is fed by a 128-bit input key. And

then the round keys for each round are generated from the origi-

nal input key through the key expansion block. Two methods exist

to generate the round keys: In the first method, the round keys are

stored in a register or memory, and then used for all incoming plain

text data. In the second method, an online key generation, where the

round keys are generated concurrently with the encryption process.

In this paper, we use the online key generation method.

3 Conventional AES Implementation

Various methods exist to realize the AES encryption. Among

them, the rolling implementation and the unrolling implementation

shown in Fig. 2(a) and (b) are the two basic methods.

The rolling implementation shown in Fig. 2(a) uses a looping

structure whereby the data are iteratively passed through the round

functions (inner transformations per round). This approach occu-

pies small area, but achieves low throughput. Existing designs[2],

[3], [6], have the throughput of approximately 1 to 1.4 G-bit/s, and

the size of the memory for the core is just 32 K bits. In the unrolling

implementation shown in Fig. 2(b), the round blocks are pipelined

and the registers are inserted to operate the round blocks simultane-

ously. Due to the pipeline, this approach achieves a high through-

PlainT ext
         In

Key Expansion Bloc k

12
8-

bi
t R

eg
.

128

128

128

CipherT ext
          Out

128

Key In

Round func tions

128

(a) Rolling im plem entation of AES Enc ryption w ith 128-bit key.

12
8-

bi
t 

R
eg

.

128

12
8-

bi
t 

R
eg

.

128128 128

R
ou

nd
1

R
ou

nd
10128128

PlainT ext
         In

CipherT ext
          Out

128

Key Expansion Bloc k

Key In128

(b) Unrolling im plem entation of AES Enc ryption w ith 128-bit key.

S
hi

ft
R

ow
s

M
ix

C
ol

um
ns

A
dd

R
ou

nd
K

ey

S
ub

B
yt

es

R
ou

nd
0

Fig. 2 Architecture of conventional AES implementations.

put, but requires large area. Existing designs[5], [6], [7], [8], have

the throughput of approximately 10 to 23 G-bit/s, and the size of the

memory for the core is up to 320 K bits.

4 AES Design Based on LUT Ring

In this section, we will show the AES encryption design based on

LUT ring [9], [10].

First, consider the transformations in the AES round. Among the

four inner transformations, the SubBytes requires the largest area

and latency. It consists of 16 S-Boxes that is the most compli-

cated function block in the entire circuit. For the SubBytes, both the

rolling implementation and the unrolling implementation use 16 S-

Boxes. In our design, we use an LUT ring to merge and implement

the ShiftRows and the SubBytes to reduce the number of S-Boxes

and area for shifters and multiplexers. To realize the S-Box, we use

the table-lookup method that is one of the fastest methods. Since

the multiplication over GF(28) in MixColumns uses a constant as

one operand, and this constant multiplication can be simply con-

verted into a bit-wise XOR operation, the matrix multiplication can

be replaced by several XOR operations. Hence, the MixColumns

can be realized as XOR operations. Also, the AddRoundKey oper-

ation uses an XOR operation to add the round key. Thus, we can

easily implement the MixColumns and the AddRoundKey by using

bit-wise XOR operations.

Fig. 3 shows the architecture of the proposed method. We used

pipeline to increase the throughput. A round unit consists of the fol-

lowing components:

Rolling Part: Performs the ShiftRows and the SubBytes using LUT

ring.

128-bit Reg.: Stores the states of each round.

MixColumns: Performs the MixColumns using several bit-wise

XOR operations.

128-bit XOR: Performs the AddRoundKey using 128-bit bit-wise

XOR operations.

— 2 —



128 128 128128128

PlainT ext
         In

CipherT ext
          Out

128

Key Expansion Bloc k
Key In

R
ou

nd
10

R
ou

nd
2

R
ou

nd
1

128

Rolling Part

ShiftRow s

SubBytes

128

M
ix

C
ol

um
ns

12
8-

bi
t 

R
eg

.

128 128

Ro un d K ey

128128

128

12
8-

bi
t X

O
R

R
ou

nd
0

Fig. 3 Architecture of the proposed method.

The rolling part is the most important part in the round unit. In

this paper, we show two architectures for the rolling part: The 4SM

and the 8SM. The 4SM shown in Fig. 4 consists of a 16-byte cyclic

shifter and four copies of S-Modules or SM. The 16-byte cyclic

shifter have 16-byte (128-bit) inputs and 4-byte outputs. Let F be

the outputs of the cyclic shifter, then

F�X0�X1� ����X15�K� �

�XK�mod16� �XK�4�mod16��XK�8�mod16��XK�12�mod16���

where K can be 0, 5, 10 and 15, and represented by the 4-bit control

signals, and Xi denotes byte data. For example,

F�X0�X1� ����X15�5� � �X5�X9�X13�X1��

Each S-Module consists of a 2K-bit ROM and a 32-bit feed-back

register, where the ROM stores the table for the S-Box, and the

feed-back register stores the outputs of the S-Box. The 8SM shown

in Fig. 5 consists of a 16-byte to 8-byte selector and eight copies of

S-Modules. In front of the selector, the permutation network is used

to arrange the input data in the required order. Table 1 shows the

permutation, where both inputs and outputs are 16-byte data. When

the output Sel is 0, the upper 8 bytes are selected, on the other hand

when the output Sel is 1, the lower 8 bytes are selected. Each S-

Module consists of a 2K-bit ROM and a 16-bit feed-back register,

where the ROM stores the table for the S-Box, and the feed-back

register stores the outputs of the S-Box. In the round operation, the

S-Modules of the 4SM are used four times, while the S-Modules of

the 8SM are used twice.

For the 4SM, we can also adopt the architecture of the 8SM. That

is to use permutation network and selector instead of the 16-byte

cyclic shifter. In our FPGA implementations, using a 16-byte cyclic

shifter produces slightly higher throughput than the permutation and

a selector, while the areas for the two implementations are almost

the same. Both of the 4SM and the 8SM, the whole circuits of the

rolling parts form the special LUT rings [9], [10].

［Example 1］ In this part, we will illustrate the operations for the

4SM. Let the four-valued representation of the 128-bit original data

be 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33. After SubBytes

and ShiftRows, the output data become 63 82 93 c3 7c c9 26 04 77

out2[31:0]

In[127:0]

c trl_out[3:0]

Cntrol Part

en

c lk

c lk

S-M odule2
32

out3[31:0]

c lk

S-M odule3
32

out1[31:0]

c lkS-M odule1
32

c lk

S-M odule4

ROM2K_04

Addr[7:0] Data[7:0]

( S_Box )

in[7:0] out[7:0]

in[15:8] out[15:8]

in[23:16] out[23:16]

in[31:24] out[31:24]

Reg.04 out4[31:0]

c lk

c lk

8

8

8

816
-b

yt
e 

cy
cl

ic
 s

hi
ft

er

s hi[3:0]

K[3:0]

Fig. 4 Architecture of the rolling part: 4SM.

In[127:0]

c trl_out[0]

Cntrol Part

en

c lk

Sel

out7[15:0]

c lk

S-M odule7
16

out1[15:0]

c lkS-M odule1
16

c lk

S-M odule8

ROM2K_08

Addr[7:0] Data[7:0]

(S_Box)
in[7:0] out[7:0]

in[15:8] out[15:8]

Reg.08 out8[15:0]

c lk

c lk

8

8

8

Se
le

ct
or

out0

out7

out8

Sel

Pe
rm

ut
at

io
n

Fig. 5 Architecture of the rolling part: 8SM.

7d b7 c7 7b ca fd 23. Figure 6 shows the operations of the 4SM.

In Step 1 (Fig. 6(a)), the outputs of the control part are

0000, and then the outputs of the 16-byte cyclic shifter become

00,01,02,03. By using the S-Boxes, the outputs of the ROMs be-

come 63,7c,77,7b, respectively.

In Step 2 (Fig. 6(b)), when a positive clock is applied, the outputs

of the control part become 0101. At the same time, the previous out-

puts of ROMs (63,7c,77,7b) are stored in the registers, and also sent

to the output terminals. And then the outputs of the 16-byte cyclic

shifter become 11,12,13,10. By using the S-Boxes, the outputs of

the ROMs become 82,c9,7d,ca, respectively.

In Step 3 (Fig. 6(c)), when a positive clock is applied, the outputs

of the control part become 1010. At the same time, the previous out-

puts of ROMs (82,c9,7d,ca) are stored in the registers, and also sent

to the output terminals. And then the outputs of the 16-byte cyclic

shifter become 22,23,20,21. By using the S-Boxes, the outputs of

the ROMs become 93,26,b7,fd, respectively.

In Step 4 (Fig. 6(d)), when a positive clock is applied, the out-

— 3 —



Table 1 Relationship between the inputs and the outputs of the permutation network in 8SM.

Inputs X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

Outputs X0 X10 X4 X14 X8 X2 X12 X6 X5 X15 X9 X3 X13 X7 X1 X11

out2[31:0]

In[127:0]

c trl_out[3:0]

Cntrol Parten=1

c lk=0

4

c lk

S-M odule2
32

out3[31:0]

c lk

S-M odule3
32

out1[31:0]

c lkS-M odule1
32

c lk

8

8

8

out4[31:0]

c lk

S-M odule4
328

7b

77

7c

63

03

02

01

00
XXXX

XXXX

XXXX

XXXX

0000

out2[31:0]

In[127:0]

c trl_out[3:0]

Cntrol Parten=1

c lk=1st

4

c lk

S-M odule2
32

out3[31:0]

c lk

S-M odule3
32

out1[31:0]

c lkS-M odule1
32

c lk

8

8

8

out4[31:0]

c lk

S-M odule4
328

ca

7d

c9

82

10

13

12

11
XXX63

XXX7c

XXX77

XXX7b

0101

(a) S tep 1 (b) S tep 2

out2[31:0]

In[127:0]

c trl_out[3:0]

Cntrol Parten=1

c lk=3rd

4

c lk

S-M odule2
32

out3[31:0]

c lk

S-M odule3
32

out1[31:0]

c lkS-M odule1
32

c lk

8

8

8

out4[31:0]

c lk

S-M odule4
328

23

c7

04

c3

32

31

30

33
X638293

X7cc926

X777db7

X7bcafd

1111

(d) S tep 4

33

23

13

03

32

22

12

02

31

21

11

01

30

20

10

00

33

23

13

03

32

22

12

02

31

21

11

01

30

20

10

00

out2[31:0]

In[127:0]

c trl_out[3:0]

Cntrol Parten=1

c lk=2nd

4

c lk

S-M odule2
32

out3[31:0]

c lk

S-M odule3
32

out1[31:0]

c lkS-M odule1
32

c lk

8

8

8

out4[31:0]

c lk

S-M odule4
328

fd

b7

26

93

21

20

23

22
XX6382

XX7cc9

XX777d

XX7bca

1010

(c) S tep 3

33

23

13

03

32

22

12

02

31

21

11

01

30

20

10

00

out2[31:0]

c trl_out[3:0]

Cntrol Parten=1

c lk=4th

4

c lk

S-M odule2
32

out3[31:0]

c lk

S-M odule3
32

out1[31:0]

c lkS-M odule1
32

c lk

8

8

8

out4[31:0]

c lk

S-M odule4
328

7b

77

7c

63

03

02

01

00

0000

(e) S tep 5

63
82
93
c3

7c
c9
26
04

77
7d
b7
c7

7b
ca
fd
23

In[127:0]

16
-b

yt
e 

cy
cl

ic
 s

hi
ft

er

s hi[3:0]

16
-b

yt
e 

cy
cl

ic
 s

hi
ft

er

s hi[3:0]

16
-b

yt
e 

cy
cl

ic
 s

hi
ft

er

s hi[3:0]

16
-b

yt
e 

cy
cl

ic
 s

hi
ft

er

s hi[3:0]

16
-b

yt
e 

cy
cl

ic
 s

hi
ft

er

s hi[3:0] 33

23

13

03

32

22

12

02

31

21

11

01

30

20

10

00

33

23

13

03

32

22

12

02

31

21

11

01

30

20

10

00

Fig. 6 Operations of rolling part: 4SM.

puts of the control part become 1111. At the same time, the previous

outputs of ROMs (93,26,b7,fd) are stored in the registers, and also

they are sent to the output terminals. And then the outputs of the

16-byte cyclic shifter become 33,30,31,32. By using the S-Boxes,

the outputs of the ROMs become c3,04,c7,23, respectively.

In Step 5 (Fig. 6(e)), when a positive clock is applied, the outputs

of the control part become 0000. At the same time, the previous out-

puts of ROMs (c3,04,c7,23) are stored in the registers, and also sent

to the output terminals. And then the outputs of the 16-byte cyclic

shifter become 00,01,02,03. In this way, the rolling part implements

the SubBytes and ShiftRows transformations. (End of Example)

5 FPGA Implementation

We use the Altera Stratix FPGA to implement the AES encryption

circuit based on LUT ring. The Altera Stratix FPGAs offer special

RAM blocks called M4K that can store 4096 bits. The M4K can

be configured at ratios between 4096�1 to 256�16, and may have

dual-port functionality. The M4Ks are also suitable for implement-

ing synchronous ROMs.

As mentioned in Section 4, in the round, the MixColumns and the

AddRoundKey can be realized as a network of XOR gates where

each gate can be implemented by one Logic Element (LE). In the

rolling part, the 16-byte cyclic shifter for the 4SM and selector

for the 8SM can be implemented by LEs. For implementing S-

Boxes, we used the M4K. Each M4K is configured as a dual-port

synchronous 256�8-bit words ROM to implement two separate S-

Boxes. The values in the look-up tables for S-Boxes are loaded into

the M4Ks at the configuration time. Since an M4K implements two

separate S-Boxes, 8 copies of the M4K are sufficient for each Sub-

Bytes (16 S-Boxes).

We also designed the unrolling implementation with the same

FPGA for comparison. In this design, the SubBytes was imple-

mented by M4Ks, the MixColumns and the AddRoundKey were

implemented by XOR gates, while the ShiftRows was simply real-

ized by hardwiring.

6 Implementation Results and Comparisons

We evaluated the performance of the proposed implementations

— 4 —



Table 2 Comparison of AES-4SM, AES-8SM and the UNROLLING.

Design Device LEs Memory for key Memory for Core f clk Cycles Throughput Gbps) E f f ( Mbps
K-bit )

AES-4SM EP1S20F780C5 13368 0 80 K-bit 44.39 20 5.68 71.00
(Stratix) (20 M4Ks)

AES-8SM EP1S20F780C5 12827 0 160 K-bit 94.53 20 12.10 75.63
(Stratix) (40 M4Ks)

UNROLLING EP1S20F780C5 12560 0 320 K-bit 160.05 20 20.48 64.00
(Stratix) (80 M4Ks)

AES-4SM EP1S10F780C5 5142 80 K-bit 80 K-bit 39.68 20 5.08 63.50
(Stratix) (20 M4Ks) (20 M4Ks)

AES-8SM EP1S10F780C5 4616 80 K-bit 160 K-bit 88.28 20 11.30 70.63
(20 M4Ks) (40 M4Ks)

UNROLLING EP1S10F780C5 3886 oversize oversize

AES-4SM EP2C35F672C7 13354 0 80 K-bit 38.23 20 4.89 61.13
(Cyclone II) (20 M4Ks)

AES-8SM EP2C35F672C7 12823 0 160 K-bit 82.99 20 10.62 66.38
(Cyclone II) (40 M4Ks)

AES-4SM and AES-8SM, and compared them with UNROLLING

(designed by us) and other published works.

6 1 Comparison with the Unrolling Implementation

To compare the performance of different architectures, we de-

signed both the proposed implementations and the unrolling im-

plementation (UNROLLING) on the same FPGA. We used Verilog

HDL to design the AES encryption with 128-bit key. In this experi-

ment, we only used Quartus II 4.1 tool for synthesis, place & route

and timing analysis.

Table 2 compares the AES-4SM, the AES-8SM and the UN-

ROLLING. The AES-4SM is implemented with rolling part 4SM,

and the AES-8SM is implemented with rolling part 8SM. For each

implementation, we used Quartus II 4.1 to obtain the maximum pos-

sible clock rate ( fclk ), the number of utilized logic elements (LEs)

and the number of M4K blocks. In Table 2, the column “Device” de-

notes the FPGA device used, the column “Memory for key” denotes

the amount of memory utilized for the key expansion and “Memory

for core”denotes the amount of memory utilized for the core, where

one M4K is equivalent to 4096 bits. The column “Cycles” denotes

the number of clock cycles for the process of the whole AES rounds.

The column “Throughput” denotes the maximum throughput cal-

culated by:

Throughput � 128 � fclk �

The final column “E f f ” shows the memory efficiency that is the

throughput (Mbps) per memory for the core (K bits) calculated by:

E f f �
Throughput

Memory for core
� (1)

The Altera Stratix Device [11] EP1S10F780C5 has the minimum

devices in the family, containing 10570 LEs and 60 M4Ks. The

EP1S20F780C5 is larger than the EP1S10F780C5 and contains

18460 LEs and 82 M4Ks. For the EP1S20F780C5, as shown in Ta-

ble 2, the AES-8SM design has the highest memory efficiency while

its throughput is lower than UNROLLING. The efficiency of AES-

8SM is higher than AES-4SM, since the selector in the AES-8SM

used one control signal while the cyclic shifter in the AES-4SM

used four control signals.

Compared with the UNROLLING, LEs utilized for the AES-4SM

and the AES-8SM are increased by 6% and 2%, but the amounts of

memory utilized for the AES-4SM and the AES-8SM are reduced

by 75% and 50%, respectively, and the memory efficiencies for the

AES-4SM and the AES-8SM are improved by 10.9% and 18.2%,

respectively.

It is interesting to find that the AES-4SM can also be implemented

on the EP1S10F780C5 by utilizing the M4Ks for the key expansion.

Note that in this method, the throughput is lower than that on the

EP1S20F780C5. Also, note that the EP1S10F780C5 is too small

for the UNROLLING, since it requires 100 copies of the M4K to

utilize the memory for both the key and the core that exceeds the

maximum number of the M4Ks of the EP1S10F780C5. However,

the AES-8SM can also be implemented on the EP1S10F780C5 (not

shown in Table 2), since it requires 60 M4Ks. We also implemented

the AES-4SM and the AES-8SM on CycloneII EP2C35 FPGA. The

throughputs are 4.89 Gbps and 10.62 Gbps, respectively. Hence, the

AES-4SM and the AES-8SM are suitable for the smaller FPGAs.

In this regard, the AES-4SM and the AES-8SM fill gap between the

rolling implementation and the unrolling implementation.

6 2 Comparison with the published works

Direct comparison among various FPGA implementations of the

AES algorithms is difficult, since FPGA target devices are often

different. However, many AES implementations have provided the

maximum throughputs and the amount of the memory utilized for

the core. Thus, we can compare the memory efficiency defined in

Equation 1.

Table 3 compares the AES-4SM, the AES-8SM and the published

works. The top two rows show our implementations. The middle

three rows show the unrolling implementations, and the last two

rows show the rolling implementations.

Compared with the unrolling implementations, the mem-

ory efficiency of the AES-8SM is higher than the fastest

— 5 —



Table 3 Comparison of AES-4SM and AES-8SM with the published works.

Design Device LEs
Slices Memory for key Memory for core Cycles Throughput (Gbps) E f f ( Mbps

K-bit ) Design Rule

AES-4SM EP1S20F780C5 13368 0 80 K-bit 20 5.68 71.00 0.13 µm
(Stratix) LEs (20 M4Ks)

AES-8SM EP1S20F780C5 12827 0 160 K-bit 20 12.10 75.63 0.13 µm
(Stratix) LEs (40 M4Ks)

Standaert et al. XCV3200E-8 2784 80 K-bit 320 K-bit 21 11.77 36.78 0.18 µm
[7](unrolling) Slices (20 BRAMs) (80 BRAMs)

Saggese et al. XVE2000-8 5810 80 K-bit 320 K-bit 50 20.30 63.44 0.18 µm
[5](unrolling) Slices (20 BRAMs) (80 BRAMs)

UF10-PP3B [6] XC2V4000 5142 80 K-bit 320 K-bit 30 23.50 73.44 0.12 µm /
(unrolling) Slices (20 BRAMs) (80 BRAMs) 0.15 µm

UF1-PP0B [6] XC2V4000 387 8 K-bit 32 K-bit 10 1.41 44.06 0.12 µm /
(rolling) Slices (2 BRAMs) (8 BRAMs) 0.15 µm

Helion [2] Stratix-5 1023 8 K-bit 32 K-bit 10 1.40 43.75 0.13 µm
(rolling) LEs (2 M4Ks) (8 M4Ks)

Slice: Contains two 4-input look-up tables; BRAM: Block SelectedRAM (4 K-bit)

implementations(UF10-PP3B) while the memory efficiency of the

AES-4SM is very close to it. Note that the number of cycles for

UF10-PP3B is 30. And the amounts of the memory utilized for the

core of the AES-4SM and the AES-8SM are reduced by 75% and

50%, respectively.

Compared with the rolling implementations, the throughput of the

AES-4SM is 4.01 times higher than the fastest rolling implementa-

tion (UF1-PP0B), and the memory efficiency of the AES-4SM is

1.61 times higher than UF1-PP0B , but the amount of the memory

utilized for the core is 2.5 times larger than them. The throughput of

the AES-8SM is 8.58 times higher than the fastest rolling implemen-

tation (UF1-PP0B), and the memory efficiency of the AES-4SM is

1.72 times higher than UF1-PP0B , but the amount of the memory

utilized for the core is 5 times larger than them.

The AES-4SM and AES-8SM have much higher throughput than

the software implementations. An AES encryption in a feedback

mode achieves 1.538 Gbps on a 3.2 GHz Pentium4 processor [12]

and a 640Mbps on a 1 GHz embedded processor [13].

7 Conclusions

In this paper, we have shown two partial-rolling architectures

(AES-4SM and AES-8SM) of the AES encryption, and imple-

mented them on Altera Stratix EP1S20F780C5 FPGA. The key

technique is LUT ring, which is quite suitable for FPGA implemen-

tation. The AES-4SM achieved 5.61 Gbps throughput by using 20

M4Ks, and the AES-8SM achieved 10.49 Gbps throughput by us-

ing 40 M4Ks. Compared with the unrolling implementation on the

same FPGA, the amounts of the memory were reduced by 75% and

50%, and the memory efficiencies were improved by 10.9% and

18.2%, respectively. The AES-4SM fills gap between the rolling

and unrolling implementations, and fits on less expensive FPGA de-

vices such as Cyclone II.

Acknowledgments

This research is partly supported by JSPS, the Grant in Aid for

Scientific Research, and MEXT, the Kitakyushu area innovative

cluster project.

References

[1] National Institute of Standards and Technology (NIST), Advanced
Encryption Standard (AES), Federal Information Processing Stan-
dards Publications 197 (FIPS197), Nov. 2001.

[2] HELION Technology Limited,
“High performance AES (Rijndael ) cores for Altera FPGA,” avail-
able at http://www.heliontech.com/core2.htm.

[3] Amphion Semiconductor,
“CS5210-40: High performance AES encryption cores,” 2003, avail-
able at http://www.amphion.com/cs5210.htm.

[4] N. Pramstaller and J. Wolkerstorfer, “A universal and efficient
AES co-processor for field programmable logic arrays,” FPL 2004,
LNCS3203, pp. 565-574, 2004.

[5] G. P. Saggese, A. Mazzeo, N. Mazzocca and A. G. M. Strollo,
“An FPGA-based performance analysis of the unrolling, tiling, and
pipelining of the AES algorithm,” FPL 2003, LNCS 2778, pp. 292-
302, 2003.

[6] J. Zambreno, D. Nguyen and A. N. Choudhary, “Exploring
area/delay tradeoffs in an AES FPGA implementation,” FPL 2004,
LNCS3203, pp. 575-585, 2004.

[7] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater and J.-D. Legat, “Effi-
cient implementation of Rijndael encryption in reconfigurable hard-
ware: Improvements and design tradeoffs,” in the proceedings of
CHES 2003, Lecture Notes in Computer Science, vol. 2523, pp. 334–
350, Cologne, Germany, September 2003, Springer-Verlag.

[8] F. Charot, and E. Yahya, and C. Wagner, “Efficient modular-pipelined
AES implementation in counter mode on ALTERA FPGA,” FPL
2003, pp. 282-291, Lisbon, Portugal, 2003.

[9] H. Qin, T. Sasao, M. Matsuura, S. Nagayama, K. Nakamura and Y.
Iguchi “A realization of multiple-output functions by a look-up table
ring,” IEICE Transactions on Fundamentals of Electronics, Vol.E87-
A, pp. 3141-3150, Dec. 2004.

[10] T. Sasao, M. Kusano, and M. Matsuura, “Optimization methods in
look-up table rings,” International Workshop on Logic and Synthesis
(IWLS-2004), June 2-4, Temecula, California, U.S.A. .pp. 431-437.

[11] http://www.altera.com
[12] H. Lipmaa, “AES implementation speed comparison,” available at

http://www.tsc.hut.fi./ aes/rijndael.html,2003.
[13] K. Nadehara, M. Ikekawa, and I. Kuroda “Extended instructions

for the AES cryptography and their efficient implementation,” IEEE
Workshop on Signal Processing System (SIPS’04), Oct. 13-15, 2004,
FA-1.3.

— 6 —


