0000 00D0O0o0ooD oooo
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE.
INFORMATION AND COMMUNICATION ENGINEERS

oot LurToooudoodooouoboogn

00 ot oo ottt oo oot o0 ot oo ooft
oo oottt

t000000000000000000 0O 820-8020000000000 6804
tTtTO00000000000000000000 08208020 000000000 6804
tTtTTO000000000000 0214871 0000000000000 1-1-1
E-mail: T {ginhui,nagayama}@aries02.cse.kyutech.ac.jp, T {sasao,matsuura}@cse.kyutech.ac.jp,
Tt nakamura@cms.kyutech.ac.jp, TTTiguchi@cs.meiji.ac.jp

0000 0O0D0O0,00000 LUT(LookUpTable)i OO OO ODOOO0OOO0OOOOOOOOOOOOOOO. LUT
00000 0,000000000000000 (PLD: Programmable Logic Devic§) O 0,0 0000000000
00 20000000.00000000000000000000C000,000000D00000000O000Od
0.00o0oo0ooooooooo, 00000 LvTooooo o, 0bogoobob o0, 0000 oooog.
00o0o0,00000 WwWToOoo00gogdoogogo oo3mywmeMOoSO o odooooo,0goooooooao.
MPU(Micro ProcessingUnitl 0 00000 00000000000 0OOC,00000 LWTOOOOOO,SH-10O
OO000O0)OooOooDOoOoOOOOOOO0,77000 229000000, Pentiumlili@QOOO0OO0OOO0)0DO0OO0OO
Oo0ooooooD,3000 88000000 0.00,000000000 0.12&umCMOSOO OO0 O FPGA(Field
Programmable Gate Arra) 0 00 0000 00000000O0O.

oo0o0d0o wWwrooooo ,oooobooo,oobgoo,0ogoooooooooo

Realization of Multiple-Output Functions by Sequential Look-Up Table

Cascade

Hui QINT, Tsutomu SASAG T, Munehiro MATSUURA!, Shinobu NAGAYAMAT, Kazuyuki
NAKAMURA T, and Yukihiro IGUCHT T

T Department of Computer Science and Electronics, Kyushu Institute of Technology
6804, Kawazu, lizuka, Fukuoka, 820-8502 Japan
Tt Center for Microelectronics Systems, Kyushu Institute of Technology
6804, Kawazu, lizuka, Fukuoka, 820-8502 Japan
T1T Department of Computer Science, Meiji University
1-1-1, Higasimita, Tamaku, Kawasaki, Kanagawa, 214-8571 Japan
E-mail: T {ginhui,nagayama}@aries02.cse.kyutech.ac.jp, T {sasao,matsuura}@cse.kyutech.ac.jp,
Tt nakamura@cms.kyutech.ac.jp, TTTiguchi@cs.meiji.ac.jp

Abstract A look-up table (LUT) cascade is a new type of a programmable logic device (PLD), which provides an alternative
way to realize multiple-output functions. Two types of LUT cascades exist: A combinational LUT cascade, and a sequential
LUT cascade. Comparison with a combinational LUT cascade, the sequential LUT cascade is more flexible. A prototype
of a sequential LUT cascade has been custom-designed withnd.@80S technology. Simulation results show that the
sequential LUT cascade is 77 to 229 times faster than software programs on SH-1 with the same clock frequency, and 35 to 88
times faster than software programs on Pentiumlll with the same clock frequency, but is a little bit slower than the commercial

FPGAs.
Key words LUT cascade, Multiple-output function, Reconfigurable logic, Programmable logic device.

X1 Xs X3 Xs Control Part M emory
Wy Wy Wy Wy :| Control |i for Logic
—> —3 i< M for |*
Celly : Cell, ¢ [Cells E_> """ T’ Cellg Intef(?:)ﬁ;{ec?iron Celly
—> — —» —> IR —— N B Rt
. o - = ; Cell
wyoowy WY W nput el
Fi F2 F3 Fs Reg. |—p Ty
Programmable .
1 L]
Fig.1 Combinational LUT cascade. C,Sg{]v‘jgtrfn g
Output [€— Cellg

Reg.

1. Introduction

. . . Fig.2 Archi f ial LUT)
Programmable logic devices (PLDs) are widely used for proto- 9 rehitecture of sequential LUT cascade

typing and final products to reduce turn-around time and financial

risk. In this paper, we consider a realization of multiple-output logic X1 Y1 X2 Y2 X3 Y3)i4 14
functions by using PLDs. Various methods exist to realize multiple- ¢ ¢ ¢ ¢ ¢

; ; C,q C, Cs Cout
output logic functlong. Amgng them, RAMS and. programmable Cell, Cell, =5 cell Cell, ou
logic arrays (PLAs) directly implement logic functions. However,
when the number of input variablass large, the necessary amount *51 *52 *Ss $S4

of the hardware becomes too large. Thus, field programmable gate

arrays (FPGAs) are often used. However, FPGAs require bothphys- Fig 3 Structure of combinational LUT cascade for 4-bit adder.

ical and logic design. Also, without the complete physical design,

the prediction of the performance of FPGAs is hard because the

area and delay for the interconnections are often much larger thaR€g. stores the values of primary outputs; fidemory for Logic

that for logic cells. stores the LUT data for cells, where all of the LUT data are stored in

A look-up table (LUT) [1] cascade is a new type of a PLD. Since One memory. Th€ontrol Part consists of theControl block that
it has a memory-like structure and the interconnections are simpleJenerates control signals and theemory for Interconnections
prediction of the circuit performance is easy. Two types of LUT cas-that stores the information of the interconnections among cells; the
cades exist: A combinational LUT cascade, and a sequential LUTProgrammable Connection Network implements the interconnec-
cascade. tions among cells.

A combinational LUT cascade shown in Fig. 1 consists of several A sequential LUT cascade simulates the combinational LUT cas-
memories (cells) connected in series to realize a function. Althougt¢ade sequentially. Although it is slower than the combinational one,
the combinational LUT cascade is simple and fast, the logical caits logical ability is much higher. In the sequential LUT cascade, the
pability is low. Once the number of inputs, outputs of cell, and thenumber of inputs, outputs of the cell, and the number of cells can be
number of cells are fixed, the number of realizable functions is lim-changed by using programmable connection network.
ited. Thus, an efficient use of memory is hard. Compared with the combinational LUT cascade, the sequential

A sequential LUT cascade shown in Fig. 2 simulates a combinal- UT cascade has the following features:
tional LUT cascade sequentially using just one memory for logic. ® Requires only one memory for LUT data.

Since the number of inputs, the number of outputs of the celland ¢ Canimplement wide range of functions.

the number of cells can be changed by using programmable con- ¢ Canuse memory-packing [1] to reduce total amount of mem-
nection network, the sequential LUT cascade can implement wideP'y-

range of functions. Also, memory-packing[1] technology can be ¢ 30 to 100 times faster than a microprocessor.

used to reduce total amount of memory. O Example 1 Consider a 4-bit adder.

In this paper, we show a prototype of a sequential LUT cascade X4 X3 X2 X1
custom-designed with 0.8 CMOS technology, and compare its +) V4 Y3 Y2 W1
performance with microprocessors and FPGAs. The rest of the pa- Cout & & & S

per is organized as follows: Section 2 explains the architecture and The adder can be implemented by a combinational LUT cascade
features of the sequential LUT cascade. Section 3 presents the Cifgith four independent cells as shown in Fig. 3. Note that the number
cuit design of the prototype. The experimental results are shown iy cells is four.
Section 4, and Section 5 concludes the paper. However, if we use a sequential LUT cascade, we need just one
2. Sequential LUT Cascade memory for LUT data_. Figs. 4 (a)-(d) show the operation of the 4-bit
adder by the sequential LUT cascade. Suppose that the memory for
In this section, we explain the architecture and features of a setogic with five address linegA4, Az, A2, A1, Ag), and eight outputs
quential LUT cascade. (D7,Dg, Ds,D4,D3,D2,D1,Do).
The sequential LUT cascade shownin Fig. 2 consists of five parts: The combinational cascade consists of four cells. In this case, the
Thelnput Reg. stores the values of primary inputs; titput sequential cascade requires four steps to compute the outputs of the

.,

> A A
Pagel@ A Pageg LA
X1 » A, Memory Xo »A, Cell,
P I
V1 >Al I_Oo(‘]lric Yo >A1 Me}gnrory
X D—»AO C1D—>A0 Logic
D; Dy D; Dy
v v

e

(a) (b)
1 A4 Memory LA
Page£ »A; for Pageq >1A3 Memory
Lo
X3 >Azoglc X4 >A2 Lfoogric
Ya| A celly| Ve A
Cop | pfPor Ca [Mo cal,
2 +1D+°
83 Cout 84

Fig.4 Operation of 4-bit adder.

" . M
adder. We partition the memory into four pages, and assume that the

Read(D1, Do), and let(Cout, Su) < (D1, Do).

Let OUTREG [4:3] (Cout, Su).

Note that it simulates the combinational LUT cascade in Fig. 3.
In this way, the 4-bit adder is evaluated by accessing the memory
four times. (End of Example)

3. Circuit Design

This section presents a transistor-level design using@n3b3V
CMOS technology, and evaluates the delay of the prototype using
circuit simulatorSPI CE.

3.1 Circuit Design of the Prototype

The specifications of the prototype sequential LUT cascade are as
follows:

The number of external inputs is at most 32.

The number of outputs is at most 24.

The number of cells of LUT cascadass at most 8.

The maximum number of inputs for each cédis 13. Each
cell may have different number of inputs.

The maximum number of outputs for each cell is 8.

It can use memory-packing to reduce total amount of mem-

[]
[
ory.
Fig. 5 shows the architecture of the prototype. It consists of the
following components:
Input Reg.: 32-bit, stores the values of primary inputs.
Output Reg.: 24-bit, stores the values of primary outputs.
AR: 13-bit memory address register, stores the values of interme-

two most significant bits of the address denote the page. In the firs?Iate address.

step, the top two most significant bits are set to (0,0), as shown i

Fig. 4(a). This corresponds to the page 1 in the sequential cascad

n

64K -bit SRAM: Stores the LUT data for cells. 13 inputs and 8

gutputs.
Control Part: Includes two blocks. The RAM stores the informa-

and the first cell in the combinational cascade. We have to read the

memory to obtairC; andS;. Since the first cell has only two in-
puts, the least significant bit of the address can be either 0 or 1. Th
operation is symbolically denoted by:

(A4,A3,A2, A1, Ag) (0,0,X1,Y1, %),

wherex denotes either 0 or 1.

After reading the values diC1,S;), C; is transferred to the least

significant bits of the address for the next lookup. At the same time,
S is setto the least significant bit of the output register. This wiring

is done by the programmable connection network in Fig. 2. The in

formation for the connection for this step is stored in the memory

for interconnections. This operation is symbolically denoted by:

Read(D1, Do), and let(Cq,S;) < (D1, Do).

Let OUTREG [0] « S;.

In the second step, the 2nd page is used to olfain) as
shown in Fig. 4(b). Symbolically, the operation is denoted by:

(Ag,A3,A2,A1,A0) < (0,1,x2,Y2,Cy1).

Read(D1, Do), and let(Cy, Sp) < (D1, Do).

Let OUTREG [1] + ().

In the third step, the 3rd page is used to obi{&g, S3) as shown
in Fig. 4(c). Symbolically, the operation is denoted by:

(Ag,A3,A2,A1,A0) + (1,0,%3,Y3,C2).

Read(D1, Do), and let(Cs, Sg) «— (D1, Do).

Let OUTREG [2] (S3).

In the last step, the 4th page is used to obt&@ig, 1) as shown
in Fig. 4(d). Symbolically, the operation is denoted by:

(Ag,A3,A2,A1,A0) (1,1,X4,Y4,Cg).

tion of the interconnections among cells, and the control block con-

igists of one counter and several logic gates that generate the control

signals for the LUT cascade.

Shifter Network: Consists of several barrel shifters and a 32-bit
register that stores the values of intermediate outputs of cells. It
implements the programmable interconnections among cells.

The prototype has two important parts: The 64K-bit SRAM and
the shifter network. Since the SRAM should operate as a data path

in the cascade mode, we use an asynchronous SRAM. Because de-

signh methods of SRAMs are described in literature [2], we just show
the circuit design of the barrel shifter. The delay ofdlit shifter is
proportional to log, so combined with the fast transmission gates,
shift can be fast[2]. Furthermore, we reduced chip area by using a
singlen-channel pass transistor instead of a full transmission gate.
Fig. 6 shows the detail design of a 4-by-4 barrel shifter.

3.2 Operation Modesin Cascades

The sequential LUT cascade has two modes: ddméiguration
mode and thecascade mode. In the configuration mode, all of the
address lines of two RAMs are directly connected to the inputs
through two multiplexers. 8-bit data input lines which connected
to DIN in Fig. 5 are used to store LUT data for cells into the 64K-
bit SRAM, while another 28-bit data input lines are used to store the
information of interconnection into the RAM in the control part. In
the cascade mode all the address lines of 64K-bit SRAM are con-
nected to the MAR, while the address lines of the RAM in the con-
trol part are connected to the control block, and both RAMs are in

13 64K-bit
Inputs » SRAM .
3/2 ® 32 > I nput i Shifter 75’» war | 13 ADDR DOUT
/ / Reg. [7 P! Network 13bit
L2/ [P | 32bit
¢ Control Part WE DIN
' A
) > 3 |RAM Izg i- ?
WE / [ADDR 8
Mode) . WE
Reset : DIN 24
Clk dE y
’ Control Output Reg. (24bit)
28 24i Outputs
Fig.5 Architecture of the prototype.
. shi[0] p—¢ Delayl Delay4
shill] p—s A C D E F " H
0.63ns 1.64ns
L]
2 I p out[3] 2.80ns 0.80ns
- —r—l—?—[>< | Delay2 Delay3
in i | s T
e ¢ = Timeto Transfer Outputs of Cell
=+ * —r—‘—?-DO—DOUI[Z] Time to Setup the MAR for Cell; to the Point of E.
inf2] & ==] |:|_ I<—>D8|ay12 3<—>4'5 = '
[) = ; : : :
b Lol fereemn] 1L
in[1] D L 1T e arrre ~. D
,—| . ! .5ns ' ons . ' :
—,_|— $?—| >o—D out[0] Delayl Timeto ! Timelz : Delays Delay4
) D d 1 Setup ! Setup !
in[0] D————| ; T the MAR the MAR |
T for Cell, ! for Cellg
64K-bit SRAM
Data Output cell, ¥ cell, ¥ ... X Cells y—

Fig.8 Delay time in the signal path.

e -
i Sequential Part I
i Shifter Network — : |
H : i
Shift » 1D o IMAR 64K-bit
> Ifters | pwt Shifter T 13bit SRAM :
1 |
D 1
|
Shifters |E Reg H | F | Output H
aons H———| Reg. —»M—»
" HE| 24bit
|

Out Part

Fig.7 Signal path of the prototype.

the READ operation.

the delay time in the signal path, where the values are obtained by
SPICE simulation for a 0.38n, 3.3V CMOS process.

In Fig. 8, the delay fotn Part is denoted by Delayl, and the de-
lay for Out Part is denoted by Delay4. The delay for thegjuential
part depends on the number of clocks. In the prototype, during one
clock cycle we can access the 64K-bit SRAM once. Note that before
the memory access, we need to setup the MAR with the values of
cell address. The time to setup the MAR for the first cell is denoted
by Delay2, which is shorter than the time for the rest of the cells
because its path is C to D. The time to setup the MAR for the other
cells is equal to one clock cycle. Thus, when the combinational cas-
cade consists afcells, the time to setup the MAR for cells is equal

To use the LUT cascade, first, the chip is set to the configurationo (Delay2 + (s-1) * CLK), where CLK is 4.5 ns. However, we also
mode: We need to store LUT data into the 64K-bit SRAM and storeneed one clock cycle to transfer the outputs of the last cell to the
the interconnection information into the memory for interconnec-point E. And then after Delay3, the primary outputs are out of the

tion. Then, the chip is set to the cascade mode. Finally, we can gefequential part. Therefore, the delay time for tlsequential part
the desired result after the evaluation time.

3.3 Operation Speed of the Prototype
To obtain the operation speed of the sequential cascade, we parti-

tion the sequential LUT cascade into three parts as shown in Fig. 7.

Theln Part consists of input pad (I Pad) and input register,Ghe

Part consists of output pad (O Pad) and output register, and the oth-
ers are represented as Begjuential Part dotted line. Fig. 8 shows

is equal to(Delay2 + s* CLK + Delay3). And the total delay of
the sequential LUT cascade is obtained by the following:

Delay = Delayl + Delay2 +s* CLK + Delay3 + Delay4
0.63+2.8+4.55+0.8+1.64

4.5*s+ 5.9 (ns)

@)

0O Example Z1 Consider the 4-bit adder in Example 2.1, wheie

—4—

Time to Setup Time to Setup Time to Transfer decision diagram (BDD), and then traverse the BDD by a special

the MAR the MAR Cou @and Sy H :

for Cell, for Cell, o Poim of E. program [5], [6]. In this experlment, we used the second approach,

 Delay2 , 45ns . 45ns since it was faster than the first approach for the benchmark func-
| - -

‘ ‘ tions. We represented benchmark functions using binary decision

CM diagrams (BDDs) for characteristic functions (CFs). The numbers

- HT'% W i of nodes in BDDs for CFs were reduced by using sifting algo-
Delayi ¢ oG | Timeto | Delay3' Delay4’ rithm [7]. Then, we generated a table that represents the BDD, and
AR hemAR we used a special program to traverse the BDD data.
) i for Celly | i for Cell, ! To compare the performance of the prototype with the speed
64K-bit SRAM _
Data Output Ci, 51>< Ca, 52><C3~ 53><Couu S4>* for the software programs, we used RISC microprocessor SH-1

(SH7020) 20MHz [8] and Pentiumlll 1GHz with 256KB cache [9].
SH-1 is an embedded MPU used in DVDs, navigation systems,
digital cameras, etc. On the other hand, Pentiumlll is a high-
performance CPU for desktop PCs. For SH-1, we compiled the
4. The evaluation time is 4.5 4 + 5.9 (ns). software program using SH C/C++-compiler [10] with the optimiza-
Fig. 9 shows the distribution of the evaluation time for the 4-bit tion option for speed, and obtained the CPU time using SH simula-
adder. First, after Delay1, the values(@f,y1,X2,Y2,%3,Y3,%4,y¥4) tor[11]. For Pentiumlll, we compiled the software program using
are stored into the Input Reg. Second, before accessing the 64KeGNU C-compiler gcc with -O2 option, and obtained the CPU time
bit SRAM, we need to spend Delay2 to setup the MAR with by executing it on Linux with 4GB memory.
the values 0f0,0,0,x1,Y1, X, X, X, X, X, x,x, x) for Cell;, where In Table 1, the column “SH-1" denotes the average CPU time
x denotes either 0 or 1. Then, to obtad? and S;, we need per test vector for the software program on SH-1, in micro second.
to spend one clock cycle to setup the MAR with the values of When the number of inputs for benchmark function is smaller than
(0,0,1,%2,y2,C1, X, x, %, x,x,x,x) for Cell, meanwhileS; is 17, we obtained the average CPU time for the benchmark function
transferred to the point of E. During the next clock, the values ofusing the exhaustive test (i.e. st vectors, whera is the num-
(0,1,0,x3,y3,Co, X, X, %, X, X, x,x) have to be sent to the MAR ber of inputs). When the number of inputs for benchmark function is
for Cell3 to obtainCz andSz, meanwhileS; is stored in the 32-bit larger than or equal to 17, we obtained the average CPU time for the
register, ands; is transferred to the point of E. Similarly, to ob- benchmark function using 1,000,000 random test vectors. Similarly,
tainCoyt andSy, the values of0, 1, 1, X4, y4,Cg, X, X, %, X, X, X, X) the column “Penlll” denotes the average CPU time per test vector
have to be sent to the MAR fdZell4, meanwhileS; is stored in for the software program on Pentiumlll, in micro second. Pentiu-
the 32-bit register, an@z is transferred to the point of E. Dur- mlll was too fast to obtain the average CPU time accurately using
ing the next clock,S3 is stored in the 32-bit register, the@y small number of test vectors. Thus, for all benchmark functions, we
and$, are transferred to the point of E. During Delay3, bGy used 1,000,000 random test vectors. In the last three columns, the
and S4 are stored in the 32-bit register, and then the values ofcolumn “SH-1" denotes the relative speed of LUT cascades to the
(S1, S, S3,Cout,) are transferred to the output register. Finally, speed of SH-1, where the speed of SH-1 with 222MHz is set to 1.
we can get the evaluated results after Delay4. Similarly, the column “Penlll” denotes the relative speed of LUT
(End of Example) cascades to the speed of Pentiumlll, where the speed of Pentiumlll
with 222MHz is set to 1. That is, they are calculated by

Fig.9 Delay time for the 4-bit adder.

4. Experimental Results
SH-1 timex 20MHz/222MHz

LUT cascade time

We evaluated the performance of the prototype, and compared LUT/SH-1=
it with microprocessors and FPGAs. To make the argument sim-
ple, we selected functions from MCNC combinational benchmark LUT/Penlll =
set[3].

Table 1 compares the performance of the prototype with two mi-Note that 222MHz is the clock frequency for the LUT cascades.
croprocessors and commercial FPGAs. In this table, “Name”, “In”, Table 1 shows that the sequential LUT cascades are 77 to 229
and “Out” denote the function name, the number of inputs, and thdimes faster than SH-1, and 35 to 88 times faster than Pentiumlll
number of outputs, respectively. The coluns denotes the num- when the clock frequencies for LUT cascade and MPUs are equal.
ber of cells in the LUT cascade. To obtain the number of cells, we 42 Comparison with FPGAs
used the newly developed logic synthesis tool [4], where the number "€ same MCNC benchmark functions were implemented by
of inputs for each celk is set to 10. The column “Time” denotes FPGAS. Firstly, each benchmark function was optimized by SIS
the evaluation time for the prototype estimated by the equation 1 if©0! [12] with script.algebraic and then it was converted to Ver-
Section 3.3, in nano second. ilog HDL source. Secondly, by Synplify Pro (version: 7.3.3)[13]

4.1 Comparison with Microprocessors it was optimized for Altera EP20K30EFC144-1 FPGA device (1.8-

At least two approaches exist to implement software for a com-V: 0-18m)[14]. Finally, Quartus (version 2000.09) [14] was used
binational benchmark functions. The first approach is to simu-{0 Map itinto the FPGA.
late the multi-level combinational circuit by some logic simula- N Table 1, the column “LEs” denotes the number of logic el-

tor. The second approach is to represent the function by a binargMments actually used in the FPGA. The column “Delay” denotes
the delay time for each benchmark function obtained by Quartus, in

’

Penlll timex 1GHz/222MHz
LUT cascade time

’

—5__

Tablel Comparison of sequential LUT cascades with MPUs and FPGA.

LUT cascadeg SH-1 | Penlll FPGA Relative speed of LUT]
Name | In | Out| s | Time[ns]| [us] [us] | LEs | Delay [ns] | SH-1 | Penlll | FPGA
misex2| 25| 18 |5 28.4| 41.9| 0.36 35 13.2 | 133 57 | 0.46
misex3| 14 | 14 |4 239 38.6| 0.30| 263 23.4 | 146 57 | 0.98
mlp6 | 12| 12 |7 37.4| 42.0| 0.34|1074 29.0 | 101 41 | 0.78
in4 32| 20|8 41.9| 456| 0.39| 109 17.3 98 42 | 0.41
chkn 29 715 28.4| 243 | 0.22| 178 24.8 77 35| 0.87
b3 32| 20|7 37.4| 453 | 0.37| 103 18.4 | 109 45 | 0.49
b2 16| 17|6 329 43.0| 0.33| 216 259 | 118 45 | 0.79
amd 14| 24|7 37.4| 54.6 | 0.43]| 107 16.5 | 132 52 | 0.44
apex4 | 9| 194 239 49.0| 0.39| 820 235 | 185 74 | 0.98
bcO 26| 11|5 28.4| 31.9| 0.25]| 417 24.0 | 101 40 | 0.85
intb 15 713 19.4| 32.3| 0.25| 393 36.2 | 150 58 | 1.87
prom2 | 9| 213 19.4| 49.4| 0.38| 764 25.1 | 229 88 | 1.29
tial 14 8|3 19.4| 34.0| 0.27| 357 20.9 | 158 63 | 1.08
pl 8| 18(6 329 46.2| 0.38 91 14.0 | 127 52 | 0.43
m4 8| 163 19.4| 39.8| 0.30| 204 19.9 | 185 70 | 1.03
x9dn |27 715 28.4| 28.2| 0.26 31 15.9 89 41 | 0.56
gary 15| 11 |4 239 29.8| 0.24]| 181 20.4 | 112 45 | 0.85
exam |10| 102 149| 343 | 0.26| 148 18.8 | 207 79 | 1.26
t2 17| 165 284 423| 0.33 67 14.4 | 134 52 | 051

nano second. In the last three columns, the column “FPGA” denotes [4]
the relative speed of LUT cascades to the speed of FPGA, where the

speed of FPGAis setto 1. That s, it is calculated by 5]
Delay time of FPGA

LUT/FPGA= - .
UT/IFPG LUT cascade time

. . . 6
Table 1 shows that the prototype is a little bit slower than the [6]

FPGAs for many functions. Note that FPGA uses QU8CMOS
technology, while the LUT cascade uses O35 CMOS technol-
ogy. In spite of the advantages of process technology in FPGAs, [7]
the sequential LUT cascade gives a competitive performance to the
FPGAs. 8]

5. Conclusions (0]

In this paper, we have shown a realization of multiple-output
functions by a sequential LUT cascade. A prototype of a sequential
LUT cascade has been custom-designed by usingih35MOS
technology. Our experiment results show that the sequential LUT[11]
cascades is 77 to 229 times faster than software programs on SH-1
with the same clock frequency as the LUT cascade, and 35 to 88[12]
times faster than software programs on Pentiumlll with the same
clock frequency, but is a little bit slower than the commercial FP-
GAs.

10]

[13]
[14]
Acknowledgments

This research is partly supported by JSPS, the Grant in Aid for
Scientific Research, and MEXT, the Kitakyushu area innovative
cluster project.

References

[1] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of
multiple-output function for reconfigurable hardwarter national
Workshop on Logic and Synthesis(IWLS01), Lake Tahoe, CA, June
12-15, 2001, pp.225-230.

Neil H. E. Weste and K. EshraghiaRrinciples of CMOSVLS De-
sign: A Systems Perspective (second edition), , Addision-wesley pub-
lishing company 1994.

MCNC-Benchmark set: http://www.cbl.ncsu.edu/www

[2

(3]

T. Sasao and M. Matsuura “A method to decompose multiple-output
logic functions,” (in Japaneséjechnical report of IEICE, VLD2003-

108, pp. 229-234, Nov. 28, 2003.

P. C. McGeer, K. L. McMillan, A. Saldanha, A. L. Sangiovanni-
Vincentelli, and P. Scaglia, “Fast discrete function evaluation using
decision diagramsJCCAD’ 95, pp. 402-407, Nov. 1995.

S. Nagayama and T. Sasao, “Code generation for embedded sys-
tems using heterogeneous MDD#jé 12th workshop on Synthesis

And System Integration of Mixed Information technologies (SASIMI
2003), pp. 258-264, Hirosima, Japan, April 3-4, 2003.

R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,1CCAD’ 93, pp. 42-47.

Hitachi SuperH 32-bit RISC CPU SH-1 (SH7020), Renesas Technol-
ogy Co.,

http://www.renesas.com/eng/products/mpumcu/32bit/sh/.

Intel Pentium Il Processor, Intel Co.,
http://www.intel.com/products/desktop/processors/pentiumiii/.
Hitachi Embedded Workshop (HEW), SuperH RISC Engine C/C++
Compiler Package Ver. 6.0Ar2, Hitachi ULSI Systems Co.,
http:/iwww.hitachi-ul.co.jp/MYICE/XSOFT/.

Hitachi Debugging Interface (HDI) for SH Series Simulator
Ver. 5.01, Hitachi ULSI Systems Co.,
http://www.hitachi-ul.co.jp/MYICE/XSOFT/.

E. M. Sentovich et. al. “ SIS: A System for Sequential Circuit Syn-
thesis,” Dept. of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley,CA 94720, 1992.
http://www.synplicity.com

http://www.altera.com

