
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

順序回路型���カスケードによる多出力論理関数の実現

シン キ† 笹尾 勤†�†† 松浦 宗寛† 永山 忍† 中村 和之††

井口 幸洋†††

†九州工業大学情報工学部電子情報工学科 〒 ��������福岡県飯塚市大字川津 �����

††九州工業大学マイクロ化総合科学技術センター 〒 �������� 福岡県飯塚市大字川津 �����

†††明治大学理工学部情報科学科 〒 ��������神奈川県川崎市多摩区東三田 �����

	
���� † ��������������������������������������� � † �����!��������������������������� �

†† ������������������������� � ††† ����������������

あらまし 本稿では,順序回路型 LUT(Look Up Table)カスケードによる多出力論理関数の実現について述べる. LUT

カスケードは,新しいプログラマブル・デバイス (PLD: Programmable Logic Device)であり,組合せ回路型と順序回路

型の 2種類が存在する. 組合せ回路型と順序回路型は異なる利害得失を持ち,応用分野に応じて使い分けることができ

る. 多出力論理関数を実現する場合,順序回路型 LUT カスケードは,組合せ回路型に比べ,より柔軟に設計可能である.

本稿では ,順序回路型 LUT カスケードのプロトタイプを 0.35µm CMOSテクノロジで設計し ,その性能評価を行った.

MPU(Micro Processing Unit)を用いたソフトウェア実現との比較実験では,順序回路型 LUT カスケードは, SH-1(同一

周波数換算)上でのソフトウェア実現に比べ, 77倍から 229倍高速であり, PentiumIII(同一周波数換算)上でのソフト

ウェア実現に比べ, 35倍から 88倍高速であった. また,現在市販されている 0.18µm CMOSテクノロジの FPGA(Field

Programmable Gate Array)で実現したものに近い性能が得られた.

キーワード LUT カスケード ,多出力論理関数,再構成可能,プログラマブル・デバイス

�������	�
�
� ��	�������	��	 ����	�
�� �� ������	��� �

���� �����

�������

Hui QIN†, Tsutomu SASAO†�††, Munehiro MATSUURA†, Shinobu NAGAYAMA†, Kazuyuki

NAKAMURA ††, and Yukihiro IGUCHI†††

† "� ������� !# $!� ���� %����� ��& 	�����!���� '����� (������� !#)����!�!��

������ '�*�+�� (+���� ,���!��� �������� -� ��

††$����� #!� .��!������!��� %������� '����� (������� !#)����!�!��

������ '�*�+�� (+���� ,���!��� �������� -� ��

†††"� ������� !# $!� ���� %������ .�� /�0�����

������ 1�������)������ '�*����� '�����*�� �������� -� ��

	
���� † ��������������������������������������� � † �����!��������������������������� �

†† ������������������������� � ††† ����������������

Abstract A look-up table (LUT) cascade is a new type of a programmable logic device (PLD), which provides an alternative

way to realize multiple-output functions. Two types of LUT cascades exist: A combinational LUT cascade, and a sequential

LUT cascade. Comparison with a combinational LUT cascade, the sequential LUT cascade is more flexible. A prototype

of a sequential LUT cascade has been custom-designed with 0.35µm CMOS technology. Simulation results show that the

sequential LUT cascade is 77 to 229 times faster than software programs on SH-1 with the same clock frequency, and 35 to 88

times faster than software programs on PentiumIII with the same clock frequency, but is a little bit slower than the commercial

FPGAs.
Key words LUT cascade, Multiple-output function, Reconfigurable logic, Programmable logic device.

— 1 —

C ell1

F1

C ells

Fs

C ell3

F3

C ell2

F2

X2 X3 Xs
X1

Fig.1 Combinational LUT cascade.

1. Introduction

Programmable logic devices (PLDs) are widely used for proto-

typing and final products to reduce turn-around time and financial

risk. In this paper, we consider a realization of multiple-output logic

functions by using PLDs. Various methods exist to realize multiple-

output logic functions. Among them, RAMs and programmable

logic arrays (PLAs) directly implement logic functions. However,

when the number of input variablesn is large, the necessary amount

of the hardware becomes too large. Thus, field programmable gate

arrays (FPGAs) are often used. However, FPGAs require both phys-

ical and logic design. Also, without the complete physical design,

the prediction of the performance of FPGAs is hard because the

area and delay for the interconnections are often much larger than

that for logic cells.

A look-up table (LUT) [1] cascade is a new type of a PLD. Since

it has a memory-like structure and the interconnections are simple,

prediction of the circuit performance is easy. Two types of LUT cas-

cades exist: A combinational LUT cascade, and a sequential LUT

cascade.

A combinational LUT cascade shown in Fig. 1 consists of several

memories (cells) connected in series to realize a function. Although

the combinational LUT cascade is simple and fast, the logical ca-

pability is low. Once the number of inputs, outputs of cell, and the

number of cells are fixed, the number of realizable functions is lim-

ited. Thus, an efficient use of memory is hard.

A sequential LUT cascade shown in Fig. 2 simulates a combina-

tional LUT cascade sequentially using just one memory for logic.

Since the number of inputs, the number of outputs of the cell and

the number of cells can be changed by using programmable con-

nection network, the sequential LUT cascade can implement wider

range of functions. Also, memory-packing [1] technology can be

used to reduce total amount of memory.

In this paper, we show a prototype of a sequential LUT cascade

custom-designed with 0.35µm CMOS technology, and compare its

performance with microprocessors and FPGAs. The rest of the pa-

per is organized as follows: Section 2 explains the architecture and

features of the sequential LUT cascade. Section 3 presents the cir-

cuit design of the prototype. The experimental results are shown in

Section 4, and Section 5 concludes the paper.

2. Sequential LUT Cascade

In this section, we explain the architecture and features of a se-

quential LUT cascade.

The sequential LUT cascade shown in Fig. 2 consists of five parts:

The Input Reg. stores the values of primary inputs; theOutput

Programmable
Connection

Network

Control Part

Control

Memory for
Interconnection

Input
 Reg.

Output
 Reg.

Memory
for Logic

Cell1

Cell2

Cells

Fig.2 Architecture of sequential LUT cascade.

C ell1

x1 y1

S1

C 1
C ell2

x2 y2

S2

C 2
C ell3

x3 y3

S3

C 3
C ell4

x4 y4

S4

C out

Fig.3 Structure of combinational LUT cascade for 4-bit adder.

Reg. stores the values of primary outputs; theMemory for Logic
stores the LUT data for cells, where all of the LUT data are stored in

one memory. TheControl Part consists of theControl block that

generates control signals and theMemory for Interconnections
that stores the information of the interconnections among cells; the

Programmable Connection Network implements the interconnec-

tions among cells.

A sequential LUT cascade simulates the combinational LUT cas-

cade sequentially. Although it is slower than the combinational one,

its logical ability is much higher. In the sequential LUT cascade, the

number of inputs, outputs of the cell, and the number of cells can be

changed by using programmable connection network.

Compared with the combinational LUT cascade, the sequential

LUT cascade has the following features:

� Requires only one memory for LUT data.

� Can implement wide range of functions.

� Can use memory-packing [1] to reduce total amount of mem-

ory.

� 30 to 100 times faster than a microprocessor.

［Example 1］ Consider a 4-bit adder.

x4 x3 x2 x1

+) y4 y3 y2 y1

Cout S4 S3 S2 S1

The adder can be implemented by a combinational LUT cascade

with four independent cells as shown in Fig. 3. Note that the number

of cells is four.

However, if we use a sequential LUT cascade, we need just one

memory for LUT data. Figs. 4 (a)-(d) show the operation of the 4-bit

adder by the sequential LUT cascade. Suppose that the memory for

logic with five address lines�A4�A3�A2�A1�A0�, and eight outputs

�D7�D6�D5�D4�D3�D2�D1�D0�.

The combinational cascade consists of four cells. In this case, the

sequential cascade requires four steps to compute the outputs of the

— 2 —

C 1

0
1

x2
y2

Page2

(b)

Cell2

Memory
for

Logic

A4

A3

A2

A1

D 1 D 0

A0

C 2 S 2

x

0
0

x1
y1

Page1

(a)

Cell1

Memory
for

Logic

A4

A3

A2

A1

D 1 D 0

A0

C 1 S 1

C 3

1
1

x4
y4

Page4

(d)

Cell4

Memory
for

Logic

A4

A3

A2

A1

D 1 D 0

A0

C out S 4

C 2

1
0

x3
y3

Page3

(c)

Cell3

Memory
for

Logic

A4

A3

A2

A1

D 1 D 0

A0

C 3 S 3

Fig.4 Operation of 4-bit adder.

adder. We partition the memory into four pages, and assume that the

two most significant bits of the address denote the page. In the first

step, the top two most significant bits are set to (0,0), as shown in

Fig. 4(a). This corresponds to the page 1 in the sequential cascade,

and the first cell in the combinational cascade. We have to read the

memory to obtainC1 andS1. Since the first cell has only two in-

puts, the least significant bit of the address can be either 0 or 1. This

operation is symbolically denoted by:

�A4�A3�A2�A1�A0�� �0�0�x1�y1���,

where� denotes either 0 or 1.

After reading the values of�C1�S1�, C1 is transferred to the least

significant bits of the address for the next lookup. At the same time,

S1 is set to the least significant bit of the output register. This wiring

is done by the programmable connection network in Fig. 2. The in-

formation for the connection for this step is stored in the memory

for interconnections. This operation is symbolically denoted by:

Read�D1�D0�, and let�C1�S1�� �D1�D0�.

Let OUT REG [0]� S1.

In the second step, the 2nd page is used to obtain�C 2�S2� as

shown in Fig. 4(b). Symbolically, the operation is denoted by:

�A4�A3�A2�A1�A0�� �0�1�x2�y2�C1�.

Read�D1�D0�, and let�C2�S2�� �D1�D0�.

Let OUT REG [1]� �S2�.

In the third step, the 3rd page is used to obtain�C3�S3� as shown

in Fig. 4(c). Symbolically, the operation is denoted by:

�A4�A3�A2�A1�A0�� �1�0�x3�y3�C2�.

Read�D1�D0�, and let�C3�S3�� �D1�D0�.

Let OUT REG [2]� �S3�.

In the last step, the 4th page is used to obtain�Cout �S4� as shown

in Fig. 4(d). Symbolically, the operation is denoted by:

�A4�A3�A2�A1�A0�� �1�1�x4�y4�C3�.

Read�D1�D0�, and let�Cout �S4�� �D1�D0�.

Let OUT REG [4:3]� �Cout �S4�.

Note that it simulates the combinational LUT cascade in Fig. 3.

In this way, the 4-bit adder is evaluated by accessing the memory

four times. (End of Example)

3. Circuit Design

This section presents a transistor-level design using 0.35µm 3.3V

CMOS technology, and evaluates the delay of the prototype using

circuit simulatorSPICE.

3. 1 Circuit Design of the Prototype

The specifications of the prototype sequential LUT cascade are as

follows:

� The number of external inputs is at most 32.

� The number of outputs is at most 24.

� The number of cells of LUT cascades,s is at most 8.

� The maximum number of inputs for each cell,k is 13. Each

cell may have different number of inputs.

� The maximum number of outputs for each cell is 8.

� It can use memory-packing to reduce total amount of mem-

ory.

Fig. 5 shows the architecture of the prototype. It consists of the

following components:

Input Reg.: 32-bit, stores the values of primary inputs.

Output Reg.: 24-bit, stores the values of primary outputs.

MAR: 13-bit memory address register, stores the values of interme-

diate address.

64K-bit SRAM: Stores the LUT data for cells. 13 inputs and 8

outputs.

Control Part: Includes two blocks. The RAM stores the informa-

tion of the interconnections among cells, and the control block con-

sists of one counter and several logic gates that generate the control

signals for the LUT cascade.

Shifter Network: Consists of several barrel shifters and a 32-bit

register that stores the values of intermediate outputs of cells. It

implements the programmable interconnections among cells.

The prototype has two important parts: The 64K-bit SRAM and

the shifter network. Since the SRAM should operate as a data path

in the cascade mode, we use an asynchronous SRAM. Because de-

sign methods of SRAMs are described in literature [2], we just show

the circuit design of the barrel shifter. The delay of ann-bit shifter is

proportional to logn, so combined with the fast transmission gates,

shift can be fast [2]. Furthermore, we reduced chip area by using a

singlen-channel pass transistor instead of a full transmission gate.

Fig. 6 shows the detail design of a 4-by-4 barrel shifter.

3. 2 Operation Modes in Cascades
The sequential LUT cascade has two modes: Theconfiguration

mode and thecascade mode. In the configuration mode, all of the

address lines of two RAMs are directly connected to the inputs

through two multiplexers. 8-bit data input lines which connected

to DIN in Fig. 5 are used to store LUT data for cells into the 64K-

bit SRAM, while another 28-bit data input lines are used to store the

information of interconnection into the RAM in the control part. In

the cascade mode all the address lines of 64K-bit SRAM are con-

nected to the MAR, while the address lines of the RAM in the con-

trol part are connected to the control block, and both RAMs are in

— 3 —

MAR
13bit

Input
Reg.
32bit

Shifte r
Ne twork

13

Clk

323232

13

3

Inputs
13

8

Output Reg. (24bit)

8

Outputs

M o de

W E

Reset
24

24

13

29312

MUX

64K-bit
 SRAM

ADDR DOUT

WE DIN
Control Part

Control

M UX

3

3 RAM
ADDR

DIN

28

W E

Fig.5 Architecture of the prototype.

sh i[1]

ou t[3]

in [0]

in [1]

in [2]

sh i[0]

ou t[2]

ou t[1]

ou t[0]

in [3]

Fig.6 Details of a 4-by-4 barrel shifter.

MAR
13bit

Input
Reg.
32bit

Shifter 64K-bit
SRAM

M U XShifters

Shifters Output
Reg.
24bit

D

G

C

Shifter Network

B
I Pad

A

O Pad
FReg.

32bit
E

Sequential Part

In Part

Out Part

H

Fig.7 Signal path of the prototype.

the READ operation.

To use the LUT cascade, first, the chip is set to the configuration

mode: We need to store LUT data into the 64K-bit SRAM and store

the interconnection information into the memory for interconnec-

tion. Then, the chip is set to the cascade mode. Finally, we can get

the desired result after the evaluation time.

3. 3 Operation Speed of the Prototype
To obtain the operation speed of the sequential cascade, we parti-

tion the sequential LUT cascade into three parts as shown in Fig. 7.

TheIn Part consists of input pad (I Pad) and input register, theOut
Part consists of output pad (O Pad) and output register, and the oth-

ers are represented as theSequential Part dotted line. Fig. 8 shows

Delay1
A C F H

Delay4

Delay2

0.63ns 1.64ns

2.80ns

E

Delay3
0.80ns

Clock

Cell1 Cell2 Cells

Time to Setup the MAR for Cel l1.

Delay3

Delay2

Delay4

64K-bit SRAM
Data Output

Time to
Setup
the MAR
for Cel l2.

4.5 ns
Time to
Setup
the MAR
for Cel ls.

Time to Transfer Outputs of Cel l s
to the Point of E.

D

4.5 ns

4.5 ns

Delay1

Fig.8 Delay time in the signal path.

the delay time in the signal path, where the values are obtained by

SPICE simulation for a 0.35µm, 3.3V CMOS process.

In Fig. 8, the delay forIn Part is denoted by Delay1, and the de-

lay for Out Part is denoted by Delay4. The delay for thesequential

part depends on the number of clocks. In the prototype, during one

clock cycle we can access the 64K-bit SRAM once. Note that before

the memory access, we need to setup the MAR with the values of

cell address. The time to setup the MAR for the first cell is denoted

by Delay2, which is shorter than the time for the rest of the cells

because its path is C to D. The time to setup the MAR for the other

cells is equal to one clock cycle. Thus, when the combinational cas-

cade consists ofs cells, the time to setup the MAR for cells is equal

to (Delay2 + (s-1) * CLK), where CLK is 4.5 ns. However, we also

need one clock cycle to transfer the outputs of the last cell to the

point E. And then after Delay3, the primary outputs are out of the

sequential part. Therefore, the delay time for thesequential part
is equal to(Delay2 + s * CLK + Delay3). And the total delay of

the sequential LUT cascade is obtained by the following:

Delay � Delay1 + Delay2 +s * CLK + Delay3 + Delay4

� 0.63 + 2.8 + 4.5*s + 0.8 + 1.64

� 4.5*s + 5.9 (ns) (1)

［Example 2］ Consider the 4-bit adder in Example 2.1, wheres is

— 4 —

Clock

C1 , S1 C2 , S2 C3 , S3 Cou t , S4

Time to Setup
the MAR
for Cell1.

Delay3Delay1

Delay2

Delay4

64K-bit SRAM
Data Output

Time to
Setup
the MAR
for Cell2.

Time to Setup
the MAR
for Cell3.

Time to
Setup
the MAR
for Cell4.

Time to Transfer
Cout and S4

to the Point of E.
4.5 ns 4.5 ns

4.5 ns 4.5 ns

Fig.9 Delay time for the 4-bit adder.

4. The evaluation time is 4.5� 4 + 5.9 (ns).

Fig. 9 shows the distribution of the evaluation time for the 4-bit

adder. First, after Delay1, the values of�x1�y1�x2�y2�x3�y3�x4�y4�

are stored into the Input Reg. Second, before accessing the 64K-

bit SRAM, we need to spend Delay2 to setup the MAR with

the values of�0�0�0�x1�y1����������������� for Cell1, where

� denotes either 0 or 1. Then, to obtainC2 and S2, we need

to spend one clock cycle to setup the MAR with the values of

�0�0�1�x2�y2�C1��������������� for Cell2, meanwhileS1 is

transferred to the point of E. During the next clock, the values of

�0�1�0�x3�y3�C2��������������� have to be sent to the MAR

for Cell3 to obtainC3 andS3, meanwhileS1 is stored in the 32-bit

register, andS2 is transferred to the point of E. Similarly, to ob-

tainCout andS4, the values of�0�1�1�x4�y4�C3���������������

have to be sent to the MAR forCell4, meanwhileS2 is stored in

the 32-bit register, andS3 is transferred to the point of E. Dur-

ing the next clock,S3 is stored in the 32-bit register, thenCout

andS4 are transferred to the point of E. During Delay3, bothCout

and S4 are stored in the 32-bit register, and then the values of

�S1�S2�S3�Cout �S4� are transferred to the output register. Finally,

we can get the evaluated results after Delay4.

(End of Example)

4. Experimental Results

We evaluated the performance of the prototype, and compared

it with microprocessors and FPGAs. To make the argument sim-

ple, we selected functions from MCNC combinational benchmark

set [3].

Table 1 compares the performance of the prototype with two mi-

croprocessors and commercial FPGAs. In this table, “Name”, “In”,

and “Out” denote the function name, the number of inputs, and the

number of outputs, respectively. The column “s” denotes the num-

ber of cells in the LUT cascade. To obtain the number of cells, we

used the newly developed logic synthesis tool [4], where the number

of inputs for each cellk is set to 10. The column “Time” denotes

the evaluation time for the prototype estimated by the equation 1 in

Section 3. 3, in nano second.

4. 1 Comparison with Microprocessors
At least two approaches exist to implement software for a com-

binational benchmark functions. The first approach is to simu-

late the multi-level combinational circuit by some logic simula-

tor. The second approach is to represent the function by a binary

decision diagram (BDD), and then traverse the BDD by a special

program [5], [6]. In this experiment, we used the second approach,

since it was faster than the first approach for the benchmark func-

tions. We represented benchmark functions using binary decision

diagrams (BDDs) for characteristic functions (CFs). The numbers

of nodes in BDDs for CFs were reduced by using sifting algo-

rithm [7]. Then, we generated a table that represents the BDD, and

we used a special program to traverse the BDD data.

To compare the performance of the prototype with the speed

for the software programs, we used RISC microprocessor SH-1

(SH7020) 20MHz [8] and PentiumIII 1GHz with 256KB cache [9].

SH-1 is an embedded MPU used in DVDs, navigation systems,

digital cameras, etc. On the other hand, PentiumIII is a high-

performance CPU for desktop PCs. For SH-1, we compiled the

software program using SH C/C++-compiler [10] with the optimiza-

tion option for speed, and obtained the CPU time using SH simula-

tor [11]. For PentiumIII, we compiled the software program using

GNU C-compiler gcc with -O2 option, and obtained the CPU time

by executing it on Linux with 4GB memory.

In Table 1, the column “SH-1” denotes the average CPU time

per test vector for the software program on SH-1, in micro second.

When the number of inputs for benchmark function is smaller than

17, we obtained the average CPU time for the benchmark function

using the exhaustive test (i.e., 2n test vectors, wheren is the num-

ber of inputs). When the number of inputs for benchmark function is

larger than or equal to 17, we obtained the average CPU time for the

benchmark function using 1,000,000 random test vectors. Similarly,

the column “PenIII” denotes the average CPU time per test vector

for the software program on PentiumIII, in micro second. Pentiu-

mIII was too fast to obtain the average CPU time accurately using

small number of test vectors. Thus, for all benchmark functions, we

used 1,000,000 random test vectors. In the last three columns, the

column “SH-1” denotes the relative speed of LUT cascades to the

speed of SH-1, where the speed of SH-1 with 222MHz is set to 1.

Similarly, the column “PenIII” denotes the relative speed of LUT

cascades to the speed of PentiumIII, where the speed of PentiumIII

with 222MHz is set to 1. That is, they are calculated by

LUT/SH-1�
SH-1 time�20MHz�222MHz

LUT cascade time
�

LUT/PenIII�
PenIII time�1GHz�222MHz

LUT cascade time
�

Note that 222MHz is the clock frequency for the LUT cascades.

Table 1 shows that the sequential LUT cascades are 77 to 229

times faster than SH-1, and 35 to 88 times faster than PentiumIII

when the clock frequencies for LUT cascade and MPUs are equal.

4. 2 Comparison with FPGAs
The same MCNC benchmark functions were implemented by

FPGAs. Firstly, each benchmark function was optimized by SIS

tool [12] with script.algebraic and then it was converted to Ver-

ilog HDL source. Secondly, by Synplify Pro (version: 7.3.3) [13]

it was optimized for Altera EP20K30EFC144-1 FPGA device (1.8-

V, 0.18µm) [14]. Finally, Quartus (version 2000.09) [14] was used

to map it into the FPGA.

In Table 1, the column “LEs” denotes the number of logic el-

ements actually used in the FPGA. The column “Delay” denotes

the delay time for each benchmark function obtained by Quartus, in

— 5 —

Table1 Comparison of sequential LUT cascades with MPUs and FPGA.

LUT cascades SH-1 PenIII FPGA Relative speed of LUT

Name In Out s Time [ns] [µs] [µs] LEs Delay [ns] SH-1 PenIII FPGA

misex2 25 18 5 28.4 41.9 0.36 35 13.2 133 57 0.46
misex3 14 14 4 23.9 38.6 0.30 263 23.4 146 57 0.98
mlp6 12 12 7 37.4 42.0 0.34 1074 29.0 101 41 0.78
in4 32 20 8 41.9 45.6 0.39 109 17.3 98 42 0.41
chkn 29 7 5 28.4 24.3 0.22 178 24.8 77 35 0.87
b3 32 20 7 37.4 45.3 0.37 103 18.4 109 45 0.49
b2 16 17 6 32.9 43.0 0.33 216 25.9 118 45 0.79
amd 14 24 7 37.4 54.6 0.43 107 16.5 132 52 0.44
apex4 9 19 4 23.9 49.0 0.39 820 23.5 185 74 0.98
bc0 26 11 5 28.4 31.9 0.25 417 24.0 101 40 0.85
intb 15 7 3 19.4 32.3 0.25 393 36.2 150 58 1.87
prom2 9 21 3 19.4 49.4 0.38 764 25.1 229 88 1.29
tial 14 8 3 19.4 34.0 0.27 357 20.9 158 63 1.08
p1 8 18 6 32.9 46.2 0.38 91 14.0 127 52 0.43
m4 8 16 3 19.4 39.8 0.30 204 19.9 185 70 1.03
x9dn 27 7 5 28.4 28.2 0.26 31 15.9 89 41 0.56
gary 15 11 4 23.9 29.8 0.24 181 20.4 112 45 0.85
exam 10 10 2 14.9 34.3 0.26 148 18.8 207 79 1.26
t2 17 16 5 28.4 42.3 0.33 67 14.4 134 52 0.51

nano second. In the last three columns, the column “FPGA” denotes

the relative speed of LUT cascades to the speed of FPGA, where the

speed of FPGA is set to 1. That is, it is calculated by

LUT/FPGA�
Delay time of FPGA
LUT cascade time

�

Table 1 shows that the prototype is a little bit slower than the

FPGAs for many functions. Note that FPGA uses 0.18µm CMOS

technology, while the LUT cascade uses 0.35µm CMOS technol-

ogy. In spite of the advantages of process technology in FPGAs,

the sequential LUT cascade gives a competitive performance to the

FPGAs.

5. Conclusions

In this paper, we have shown a realization of multiple-output

functions by a sequential LUT cascade. A prototype of a sequential

LUT cascade has been custom-designed by using 0.35µm CMOS

technology. Our experiment results show that the sequential LUT

cascades is 77 to 229 times faster than software programs on SH-1

with the same clock frequency as the LUT cascade, and 35 to 88

times faster than software programs on PentiumIII with the same

clock frequency, but is a little bit slower than the commercial FP-

GAs.

Acknowledgments

This research is partly supported by JSPS, the Grant in Aid for

Scientific Research, and MEXT, the Kitakyushu area innovative

cluster project.

References
[1] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of

multiple-output function for reconfigurable hardware,”International
Workshop on Logic and Synthesis(IWLS01), Lake Tahoe, CA, June
12-15, 2001, pp.225-230.

[2] Neil H. E. Weste and K. Eshraghian,Principles of CMOS VLSI De-
sign: A Systems Perspective (second edition), , Addision-wesley pub-
lishing company 1994.

[3] MCNC-Benchmark set: http://www.cbl.ncsu.edu/www

[4] T. Sasao and M. Matsuura “A method to decompose multiple-output
logic functions,” (in Japanese).Technical report of IEICE, VLD2003-
108, pp. 229-234, Nov. 28, 2003.

[5] P. C. McGeer, K. L. McMillan, A. Saldanha, A. L. Sangiovanni-
Vincentelli, and P. Scaglia, “Fast discrete function evaluation using
decision diagrams,”ICCAD’95, pp. 402-407, Nov. 1995.

[6] S. Nagayama and T. Sasao, “Code generation for embedded sys-
tems using heterogeneous MDDs,”the 12th workshop on Synthesis
And System Integration of Mixed Information technologies (SASIMI
2003), pp. 258-264, Hirosima, Japan, April 3-4, 2003.

[7] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,”ICCAD’93, pp. 42–47.

[8] Hitachi SuperH 32-bit RISC CPU SH-1 (SH7020), Renesas Technol-
ogy Co.,
http://www.renesas.com/eng/products/mpumcu/32bit/sh/.

[9] Intel Pentium III Processor, Intel Co.,
http://www.intel.com/products/desktop/processors/pentiumiii/.

[10] Hitachi Embedded Workshop (HEW), SuperH RISC Engine C/C++
Compiler Package Ver. 6.0Ar2, Hitachi ULSI Systems Co.,
http://www.hitachi-ul.co.jp/MYICE/XSOFT/.

[11] Hitachi Debugging Interface (HDI) for SH Series Simulator
Ver. 5.01, Hitachi ULSI Systems Co.,
http://www.hitachi-ul.co.jp/MYICE/XSOFT/.

[12] E. M. Sentovich et. al. “ SIS: A System for Sequential Circuit Syn-
thesis,” Dept. of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley,CA 94720, 1992.

[13] http://www.synplicity.com
[14] http://www.altera.com

— 6 —

