BDD を用いた多出力関数の分解の一手法について

笹尾 勤† 松浦 宗寛†

† 九州工業大学情報工学部電子情報工学科 〒 820−8502 福岡県飯塚市大字川津 680−4
E-mail: †{sasao,matsuura}@cse.kyutech.ac.jp

あらまし 与えられた多出力関数を,中間出力を有する二つの論理回路に分解する方法を示す.設計には,多出力論理 関数の特性関数を表現する BDD(BDD for CF)を用いる.また,多数のベンチマーク関数を中間出力を有する LUT カ スケードで実現した場合の実験結果を示す.

キーワード LUT カスケード、多出力論理関数、特性関数、二分決定グラフ、BDD for CF

A Method to Decompose Multiple-Output Logic Functions

Tsutomu SASAO† and Munehiro MATSUURA†

† Department of Computer Science and Electronics, Kyushu Institute of Technology 680–4, Kawazu, Iizuka, Fukuoka, 820–8502 Japan E-mail: †{sasao,matsuura}@cse.kyutech.ac.jp

Abstract This paper shows a method to decompose a given multiple-output circuit into two circuits with intermediate outputs. We use a BDD for characteristic function (BDD for CF) to represent a multiple-output function. Many benchmark functions were realized by LUT cascades with intermediate outputs.

Key words LUT cascade, Multiple-output function, Characteristic function, Binary decision diagram, BDD for CF

1. はじめに

論理関数の分解[1]は、FPGA [19]の設計に応用されている. FPGAの設計では、各モジュールの入力数は高々5程度で、BDD を用いて分解する手法が一般的である[3],[7],[10].一般に、ラ ンダムな(ほとんどすべての)論理関数は、分解不能である[17] が、コンピュータ等で使用する制御回路や算術演算回路等の多 くの実用的関数は、分解可能なものが多い[12].

関数が $f(X_1, X_2) = g(h(X_1)X_2)$ と表現できるとき, $h(X_1)$ と $g(h, X_2)$ を別々に実現し、直列に接続することを繰り返すこ とにより、LUT 型の FPGA の設計が可能である。単一出力の 論理関数を関数分解を用いて実現するのは、比較的容易である。 しかし、多出力関数の場合の分解・構成法に関しては、まだ決定 的な方法は知られていない.現在までに、

- (1) MTBDD を用いる方法[7]
- (2) 出力をいくつかのグループに分割して構成する方法[7]
- (3) 分割理論を用いる方法[15],[18]
- (4)代入による方法[14]
- (5) Hyper Function を用いる方法 [5]
- (6) ECFN を用いた時分割実現による方法[13]
- (7) 以上の方法の組み合わせによる方法[14]

などが提案されている.

本論文では、多出力論理関数の特性関数を表現する BDD(BDD for CF [2],[16])を用いた関数分解の方法を示す.本方法は、BDD for CF を用いており、中間出力を有するカスケードの合成に適 している.アルゴリズムは比較的単純であるため、設計の見通 しはよい.

従来の FPGA では、接続線の遅延の方が論理部の遅延よりも はるかに大きい.これは、FPGA の速度の基本的な制限の一つ となっている.

2. 諸定義ならびに基本的性質

[定義 1] 入力変数を $X = (x_1, x_2, \dots, x_n)$. 多出力関数を $F = (f_1(X), f_2(X), \dots, f_m(X))$ とする. 多出力関数の特性関数を

$$\chi(X,Y) = \bigwedge_{i=1}^{m} (y_i \equiv f_i(X))$$

とする. ここで y_i は出力を表す変数である.

n入力 m 出力関数の特性関数は, (n + m) 変数の二値論理関 数であり、入力変数 x_i (i = 1, 2, ..., n) の他に、各出力 f_i に 対して出力変数 y_i を用いる. $B = \{0, 1\}$ とする. $\vec{a} \in B^n$ か

図1 中間出力のある関数分解

 $つ F(\vec{a}) = (f_0(\vec{a}), f_1(\vec{a}), \dots, f_{m-1}(\vec{a})) \in B^m$ とする. いま, $\vec{b} \in B^m$ とすると,

$$\chi(\vec{a}, \vec{b}) = 1$$
 ($\vec{b} = F(\vec{a})$)
= 0 (上以外の時)

となる.

[定義 2] 多出力関数 $F = (f_1, f_2, ..., f_m)$ の BDD for CF と は, Fの特性関数 χ を表現する BDD である. 但し, BDD の変 数は, 根節点を最上位としたとき, 変数 y_i は, f_i に依存する変 数の下に置く.

[定義 3] BDD for CF において、出力を表す節点 y_i とその節 点から出る枝のうち、定数 0 に接続する枝を取り除き、それ以 外の枝がさす節点に、節点 y_i の親から直接枝をつなぐ. この作 業を y_i を表現する全ての節点に対して実行する操作を出力変 数 y_i の短絡除去という.

[定義 4] BDD の高さ *k* での幅とは, 変数 *z_k* と *z_{k+1}* の間の 枝の本数をいう. ここで, 同じ節点に接続している枝は一つと 数える.

[定理 1] X₁, X₂ を入力変数の集合, Y₁, Y₂ を出力変数の集合 とする. BDD for CF の変数順序を (X_1, Y_1, X_2, Y_2) とすると き, BDD for CF $\mathcal{O}(X_1, Y_1)$ における幅を W とする. ここで, Wを数える際、出力を表現する変数から、定数0に向かう枝は 無視する.多出力関数を図1の回路で実現する場合、二つの回 路 $H \ge G$ の間の必要かつ十分な接続線数は $\lceil \log_2 W \rceil$ である. (証明) BDD for CF の構成法から, 出力関数 Y₁ と Y₂ が, 図 1 の回路で表現可能であることは、明らかである. BDD for CF において、 Y_1 の出力を表現する節点を短絡除去すると、 Y_1 以外 の関数を表現する BDD for CF が得られる. また、この操作に よって、BDD の幅は増えることはない. X1 と X2 の間を分離 する節点数を W とする. いま, 関数分解 $g(h(X_1), X_2)$ の分解 表を考えると、その列複雑度はWに等しい.従って、回路Hと 回路 G の間の配線は、 $[\log_2 W]$ 本あれば十分である.また、分 解表の列複雑度は W なので、二つのブロック間の配線は少なく とも [log, W] 本必要である. (証明終)

BDD for CF の変数順序を (X_1, Y_1, X_2, Y_2) , $Y_1 = (y_1, y_2, ..., y_k)$ とする. $f_i(X_1)$ (i = 1, 2, ..., k) は、図 1 の 回路 H で直接実現する. (X_1, Y_1) における BDD の幅を W とする. W 本の線に $t = \lceil \log_2 W \rceil$ ビットの異なる 2 進数 を割り当てる. 二つのプロック間を接続する線が実現する 関数を $u_1, u_2, ..., u_t$ とすると, $Y_2 = (f_{k+1}, f_{k+2}, ..., f_m)$ は, $(u_1, u_2, ..., u_t, X_2)$ の関数として表現可能であり, その BDD for CF は図 2 のようになる.

[例1] 二つの2ビットの2進数を加算する回路 (ADR2)を中

図 2 BDD for CF による Y₂ の実現法

間出力を有する関数分解を用いて実現する. ADR2 の入出力の 関係は次のように定義できる.

	a_1	a_0
	b_1	b_0
s_2	s_1	s_0
	s_2	$egin{array}{c} a_1 \ b_1 \ \hline s_2 \ s_1 \end{array}$

これより,

$$s_0 = a_0 \oplus b_0$$

$$s_1 = a_0 b_0 \oplus (a_1 \oplus b_1)$$

 $s_2 = MAJ(a_0b_0, a_1, b_1) = a_0b_0(a_1 \vee b_1) \vee a_1b_1.$

変数の分割として、 $X_1 = (a_0, b_0), Y_1 = (s_0), X_2 = (a_1, b_1),$ $Y_2 = (s_1, s_2) とおく. 変数順序は、<math>(X_1, Y_1, X_2, Y_2) = (a_0, b_0, s_0, a_1, b_1, s_1, s_2)$ となる.

BDD for CF は、図 3(a) のようになる. $X = (X_A, X_B)$, $X_A = (X_1, Y_1), X_B = (X_2, Y_2)$ と分割すると、 X_A での BDD の幅 W は 2 となる. 従って、回路 H と回路 G の間を連結する 線は $\lceil \log_2 W \rceil = 1$ 本あればよい. 出力 s_0 は、 X_1 のみの関数と して表現可能である. 次に、新しい中間変数 u_1 を導入し、BDD の上部を u_1 を変数とする決定木で置き換える (図 3(b)).

次に、図 3(c) に示すように、 u_1 、 a_1 、 b_1 を入力、 s_1 、 s_2 を出 力とする MTBDD を構成する. これより、図 4 に示すような、 ADR2 の回路の真理値表が得られる. (例終り)

3. LUT 回路構成への応用

関数分解を繰り返し適用することにより、LUT カスケード や LUT ランダム回路を構成できる. ここで、LUT の入力数を $k \ge 3$ とする

BDD for CF を最小化し,根の部分から,k変数抽出する. こ の際,出力を表す変数は数えない.次に,BDD の幅 W を求め る.この際,出力を表現する変数から定数 0 に向かう枝は無視 する. $u = \lceil \log_2 W \rceil$ 個の中間変数を導入する. $u \ge k$ の場合 には,関数分解では対処できない.W 個の部分関数に, $u \lor v$ トの二進符号を割り当てる.ここでは,簡単のため,一つの部分 関数に一つの二進符号を割り当てる.ドント・ケアも特に考慮 しない.未使用の符号は,適当な部分関数(1つ)に割り当てる. LUT で,k入力 (u + w)出力の回路を構成する.ここで,w は, この抽出で,実現される中間出力の個数を表す.抽出した部分 の出力変数を短絡除去する.k 個の変数をu 個の中間変数で置 き換え,BDD for CF を再構築する.以下同様に,根からk変数 抽出する.

4. LUT カスケード設計アルゴリズム

ー般に、実用的な多出力論理関数は1つの BDD for CF で表 現するとメモリ量が大きくなり過ぎる.また、1つの BDD for CF で表現できる場合でも、LUT カスケードで実現できない場 合がある.そのため、ここでは出力をいくつかのグループに分 割して、各出力グループを別々にカスケード実現することを考 える.出力を分割する時、それぞれの出力集合の依存変数は少 ない方が望ましい.ここでは、まず依存変数がなるべく増えな いような順序に出力関数を並べ、次にその順序で出力集合を分 割9 6万束を用いる. アルコリスム 1 を用いて決定した田方順 序で,出力数を増やしながら LUT カスケードで実現可能かど うか確認していく.本手法では,LUT カスケードで実現不可能 な出力関数グループは生じにくい.

4.1 出力順序の決定

[アルゴリズム 1] (出力関数の順序付け)

出力関数の初期順序を $(f_0, f_1, \ldots, f_{m-1})$ とする.

(1) $i \leftarrow 0, j \leftarrow 0, \min T \leftarrow \infty, \min order \leftarrow \overline{\partial \eta}$

(2) $f_i \geq f_j$ の位置を入れ換える.

(3) $T \leftarrow \sum_{k=0}^{m-1} |\bigcup_{l=0}^{k} sup(f_l)| を計算する [2]. ここで, <math>sup(f_l)$

は f_l の依存変数の集合を示す.

(4) T < minT ならば $minT \leftarrow T$, $minorder \leftarrow$ 現在の 出力順序 とする.

(5) j < m-1ならば $j \leftarrow j+1$ として2へ戻る.

(6) $j \leftarrow 0, i < m-1$ ならば $i \leftarrow i+1$ として2へ戻る.

(7) minT が更新されたならば $i \leftarrow 0$ として 2 へ戻る. そ うでなければ minorder を出力順序として終了する.

ここで用いる値 T は、ある順序で出力関数をグループに加えて 行く際のグループの依存変数の個数を示す.出力の順序を変え ながら T の値を計算し、依存変数の個数の増加を抑える順序を 求める.

4.2 変数順序の決定

与えられた多出力関数をBDD for CF を用いて $g(h_1(Z_1), h_2(Z_1), \ldots, h_u(Z_1), Z_2)$ の形に関数分解することを 考える.ここで、 Z_i は入力変数または出力変数を表す.集合 $\{Z_1\}$ が出力変数を含む場合、その段のLUTは出力変数が表す 関数を出力する.つまり、LUTカスケードの途中で出力を生成 する.出力変数が根に近ければカスケードの入力に近いLUT で出力が得られ、後段のLUTの入力数を削減できる.そこで、 BDD for CF の初期変数順序として、出力変数がなるべく根に 近い位置になるような変数順序を考える.

[アルゴリズム 2] (変数順序の決定)

(1) アルゴリズム1を適用し、得られた出力順序を
(f₀, f₁,..., f_{m-1})とする.

(2) f_i の依存変数の集合を sup(f_i), f_i を表す出力変数を
y_i とする.

(3) BDD の根から sup(f₀), y₀, sup(f₁) - sup(f₀), y₁,
sup(f₂) - sup(f₁) - sup(f₀), y₂, ..., sup(f_{m-1}) - sup(f_{m-2}) - ... - sup(f₀), y_{m-1} となるように変数順序を決定する.このと
き, sup(f_i) の変数順序は SBDD の節点数を最小化した変数順
序をそのまま使う.

関数分解を行う時は、この変数順序を初期変数順序として、BDD for CF の幅の総和を減らすように変数順序を変更する.

4.3 BDD for CF を用いた LUT カスケード実現法 ここでは、BDD for CF が与えられた時に LUT カスケード を実現するアルゴリズムを示す.

LUT の最大入力数を k,最大出力数を r とする. (Z_1, Z_2) を 変数の分割として, $f(Z) = g(h_1(Z_1), \ldots, h_u(Z_1), Z_2)$ の形で関 数分解した時, $|Z_1| \leq k$ かつ, $(Z_1 中の出力数+\lceil \log_2 W \rceil) \leq r$ の時LU1 で美境可能でのる。ここで、 $\{21\}$ を来縛朱言という。 また、W は高さ $|Z_2|$ における BDD の幅である。

[アルゴリズム 3] (BDD for CF を用いた LUT カスケード実現)

与えられた多出力関数を $F = (f_0, f_2, \dots, f_{m-1}), F$ の依存変数 を Z,入力数を n,出力数を m とする. F を表現する BDD for CF を bdd_{cf} とする.根の高さを n+m,終端節点の高さを 0 と する.高さ i に対応する変数を $z_i, \{Z_a\}$ を変数の集合とする.

(1) $i \leftarrow n + m + 1, a \leftarrow 0, Z_a \leftarrow \phi$ とする.

(2) $i \leftarrow i - 1, \{Z_a\} \leftarrow \{Z_a\} \cup \{z_i\}$

(3) {Z_a} ∪ {z_i} を束縛集合とする. 関数分解し, LUT 実
現可能であれば 2 へ戻る.

(4) |*Z_a*| = 1 ならば LUT カスケード実現不可能として終 了する.

(5) (Z_a, Z_b) を変数の分割として $g(h(Z_a), Z_b)$ の形で関 数分解を行う.ここで、 $\{Z_b\} = \{Z\} - \{Z_a\}$. Z_a の部分の MTBDD を作り、LUT 回路として出力する. Z_a の部分のすべ ての出力変数を短絡除去する.列複雑度を $\mu_a, u_a = \lceil \log_2 \mu_a \rceil$ とすると、 $u_a + |Z_b| \leq k$ ならば関数 g を LUT 回路として出力 し終了する.

(6) $i \leftarrow |Z_b| + 1, a \leftarrow a + 1, \{Z\} \leftarrow \{Z\} - \{Z_a\}, \{Z_a\} \leftarrow \phi, bdd_{cf} \leftarrow 関数 g を表現する BDD for CF として 2 へ戻る.$

BDD for CF に対して, $\{Z_1\}$ を束縛集合として関数分解を行っ た場合,列複雑度を μ とすると $u = \lceil \log_2 \mu \rceil$ 個の中間変数と $\{Z_1\}$ 中の出力変数の個数がこの段の LUT の出力数となる. k入力 r 出力 LUT を用いて関数分解が可能な条件は, (前段から の中間変数の個数 + 入力変数の個数) $\leq k$ かつ, (出力変数の個 数 + この段の中間変数の個数u) $\leq r$ の二つの条件を満たすこ とである.

4.4 LUT カスケード実現法

ここでは、与えられた多出力論理関数をカスケード実現する アルゴリズムを示す.

[アルゴリズム 4] (多出力論理関数の LUT カスケード実現) アルゴリズム 1 で得られた出力順序を $(f_0, f_1, \ldots, f_{m-1})$ とし, F_a を関数の集合とする.

(1) $i \leftarrow 0, F_a \leftarrow \phi$.

(2) $F_a \cup \{f_i\}$ の BDD for CF を構成し、変数順序を最適 化する. 初期変数順序はアルゴリズム 2 を使用して求める.

(3) アルゴリズム 3 で LUT カスケード実現することを試 みる.

(4) LUT **カスケード**実現可能な場合

(a) i = m ならば F_a の LUT カスケード回路を出力して
終了する.

(b) そうでなければ, $F_a \leftarrow F_a \cup \{f_i\}, i \leftarrow i+1$ として 2 へ戻る.

(5) LUT **カスケード実現不可能な場合**

(a) $|F_a| = 0$ ならば LUT カスケード実現不可能として終了する.

(b) そうでなければ, F_a の LUT カスケード回路を出力し,

 $F_a \leftarrow \phi$ として 2 へ戻る.

5. 実験結果

第4章のアルゴリズムをC言語で実装し、MCNC89ベンチ マーク関数に適用した. LUT の入力数 k を 8~10 にした場合 の結果を表1に示す.表中のNameは関数名,Inは入力数,Out は出力数, LUT は総 LUT 数, Lvl は最大段数, Cas はカスケー ド数を表す.表中の記号 – は本手法を用いてカスケード実現す ることができなかったことを示す.本手法は関数分解に基づい ているため、BDD の幅を µ とすると、 関数分解が可能な条件は $[\log_2 \mu] < k$ となる. 従って, μ が大き過ぎると関数分解不可能 となり、カスケード実現できない場合がある.実行環境は、IBM PC/AT 互換機, Pentium4 2.0GHz, メモリ 512MByte. OS は Windows2000, cygwin 上で gcc を用いてコンパイルした.本 アルゴリズムでは、出力のグループ分けを行うために、一つずつ 出力をグループに加えて BDD for CFを構成し変数順序最適化 を行う. k が大きくなると、LUT カスケードに対応する BDD for CF が大きくなる. LUT カスケードで構成可能な限り、グ ループの出力を一つずつ増やしながら変数順序最適化を行うた め、大きな BDD for CF の変数順序最適化を行う回数が増える. このため、k が大きくなると多くの実行時間が必要となる. 実行 時間のほとんどは、BDD for CF の変数順序最適化のための時 間である.

ベンチマーク関数 vg2 を *k* = 8 で LUT カスケード実現し た際の回路構造を図 5 に示す. LUT 数は 21 個 (8-LUT15 個, 6-LUT2 個), 段数は 5 段, 2~4 段目に中間出力がある. 中間出 力が有効に活用されていることがわかる.

次に、文献[8]の方法との比較を行った. 文献[8]の方法は、 MTBDD に基づいており、多出力関数の出力をいくつかのグ ループに分割して MTBDD で表現し、LUT カスケードで実現 する. MTBDD の幅が大きすぎるため分解不可能な場合は、OR 分割を用いて、カスケードを分割する. *k* = 10 とした場合の本 手法と文献[8]の方法との比較を表 2 に示す. 文献[8]の方法で は、一つのグループの出力数は 8 として、出力を分割している.

多くの場合,本手法で実現した方が文献[8]の方法に比べて少 ないLUT数で実現できた.また,カスケードの個数も少ない が,段数は多くなっている.文献[8]の方法では,実現したLUT カスケードのLUTの個数や段数にかかわらず,分割するグルー プの出力数を固定しているため,カスケードの個数は多くなり, 段数は小さくなる傾向にある.本手法では,LUTカスケード可 能な限り,一つのグループの出力の個数を増やすので,段数は多 くなり,カスケードの個数は少なくなる.

MCNC ベンチマーク関数に加え, 16-bit の二進数を 5 桁の BCD コードに変換する回路を設計した. この変換回路は, 様々

Name	In	Out	k = 8			k = 9			k = 10		
			LUT	Lvl	Cas	LUT	Lvl	Cas	LUT	Lvl	Cas
C1908	33	25	-	-	-	433	19	6	320	11	5
C432	36	7	143	17	2	115	16	1	78	11	1
apex1	45	45	272	23	2	167	19	1	115	12	1
apex2	39	3	56	12	1	37	8	1	38	8	1
apex3	54	50	254	21	2	165	19	1	129	14	1
apex6	135	99	479	28	5	470	22	5	395	18	4
apex7	49	37	200	24	2	159	19	1	111	13	1
b9	41	21	51	9	1	42	7	1	39	6	1
c8	28	18	79	10	2	75	9	2	66	8	2
сс	21	20	30	4	1	30	4	1	27	3	1
cht	47	36	64	10	1	56	8	1	53	7	1
$\mathrm{cm}150\mathrm{a}$	21	1	12	4	1	9	4	1	8	3	1
comp	32	3	11	5	1	11	5	1	9	4	1
count	35	16	27	6	1	29	6	1	25	5	1
duke2	22	29	59	7	1	49	5	1	46	4	1
e64	65	65	74	10	1	72	8	1	72	8	1
example 2	85	66	309	41	1	219	27	1	168	19	1
frg1	28	3	19	6	1	15	5	1	13	4	1
k2	45	45	272	23	2	167	19	1	115	12	1
lal	26	19	30	5	1	29	4	1	26	4	1
misex2	25	18	29	5	1	26	4	1	25	4	1
mux	21	1	12	4	1	9	4	1	8	3	1
my_adder	33	17	27	6	1	20	4	1	23	4	1
pcler8	27	17	52	8	2	58	8	1	43	6	1
rot	135	107	1124	28	15	1028	38	11	1248	34	8
seq	41	35	153	20	1	104	13	1	84	9	1
term1	34	10	120	18	1	65	10	1	50	8	1
too_large	38	3	56	12	1	37	8	1	38	8	1
ttt2	24	21	74	9	2	74	9	2	54	6	1
unreg	36	16	34	7	1	31	6	1	28	5	1
vg2	25	8	21	5	1	18	4	1	16	4	1
x1	51	35	312	21	4	259	18	4	224	14	3
x3	135	99	479	28	5	470	22	5	395	18	4
x4	94	71	272	24	3	214	17	3	161	13	3

な実現法が知られている. 文献 [9] には、一つ実現法として 13 個のモジュール (ROM) を使った回路が示されている. 図 6 に アルゴリズム 4 で LUT カスケード実現した際の回路構造を 示す. 入力の二進数は $x_1, x_2, ..., x_{16}$, 出力の BCD コードは $f_1, f_2, ..., f_{19}$ と表現している. この回路では、3 個の 11 入力 LUT を使用している. ここで、最上位桁の最上位 bit である f_0 は、常に 0 となるので省略している.

さらに、この回路を SIS を用いて設計した. 真理値表から設計した場合、時間がかかり過ぎ、設計できなかったため、この回路を SBDD で表現して節点数最小化を行い、マルチプレクサ回路を生成して、これを初期回路とした. 以下のコマンドを適用した場合、LUT の個数は 644 個、最大段数は 15 となった.

- > script.rugged
- >xl_split -n 10
- > xl_pratition -n 10

同様に、次のコマンドを適用した場合は、LUT の個数は 215 個, 最大段数は 4 となった.

- > xl_split -n 10
- > xl_pratition -n 10

この例では、アルゴリズム4はSISと比較して、かなりより結

図 6 二進数 BCD 変換回路

果となった.

6. 今後の課題

本手法を用いると、多出力関数を効率良く LUT カスケード で実現できる.しかし、kの値が大きいとき、BDD for CF が大 きくなり、変数順序最適化に非常に時間がかかる.また、本手法 では、中間出力を有効に使うことを考え、BDD for CF の初期 変数順序を決定している.この変数順序が BDD for CF の節点 数を増大させる場合、BDD for CF を構成できない場合もある. これらの問題を解決するために、アルゴリズムを適用する前に 出力をいくつかのグループに分割する方法や、節点数を増大さ せないような初期変数順序の決定法、そして効率の良い変数順

Name	In	Out	本手法			文献 [8]		
			LUT	Lvl	Cas	LUT	Lvl	Cas
C1908	- 33	25	320	11	5	3015	18	30
C432	36	7	78	11	1	80	11	1
apex1	45	45	115	12	1	213	10	5
apex2	39	3	38	8	1	29	7	1
apex3	54	50	129	14	1	213	9	6
apex6	135	99	395	18	4	728	18	18
apex7	49	37	111	13	1	119	6	5
c8	28	18	66	8	2	138	8	3
cht	47	36	53	7	1	128	4	8
comp	32	3	9	4	1	8	4	1
count	35	16	25	5	1	134	8	3
duke2	22	29	46	4	1	51	3	4
e64	65	65	72	8	1	162	9	8
example2	85	66	168	19	1	327	13	9
frg1	28	3	13	4	1	13	4	1
k2	45	45	115	12	1	213	10	5
lal	26	19	26	4	1	24	2	3
misex2	25	18	25	4	1	18	3	2
my_adder	33	17	23	4	1	81	7	2
064	130	1	30	16	1	30	16	1
pcler8	27	17	43	6	1	59	6	2
rot	135	107	1248	34	8	1383	24	16
seq	41	35	84	9	1	132	8	4
term1	34	10	50	8	1	37	6	2
too <u>l</u> arge	38	3	38	8	1	32	7	1
ttt2	24	21	54	6	1	47	4	3
unreg	36	16	28	5	1	142	8	3
vg2	25	8	16	4	1	29	5	1
x1	51	35	224	14	3	340	17	5
x4	94	71	161	13	3	324	9	10

序最適化法の開発が必要である.

7. あとがき

本論文では、BDD for CF を用いて、多出力論理回路の分解を 行う方法を示した.本手法は、中間出力を有するカスケードの 実現に有効である.従来の MTBDD を用いた方法では、中間出 力を有する回路の分解は、取り扱えなかった.BDD for CF に おいて、出力を表す変数が根に近いところに存在すれば、本手法 を用いると中間出力として生成できるので、次段の回路の入力 数を削減できる.また、多くの関数では、MTBDD よりも BDD for CF の節点数は小さくなる.そのため MTBDD を構成でき ないような関数に対しも、本手法が有効な場合がある.ただし、 出力を表す変数が全て、葉に近いところに存在する場合には、本 手法は、MTBDD を用いた場合とほぼ等価となり、あまり効果 は期待できない.

謝 辞

本研究は、一部、文部科学省・科学研究費補助金、および、文部科学省・北九州地域知的クラスター創成事業の補助金による.

文

献

 R. L. Ashenhurst, "The decomposition of switching functions," In Proceedings of an International Symposium on the Theory of Switching, pp. 74-116, April 1957.

- [2] P. Ashar and S. Malik, "Fast functional simulation using branching programs," Proc. International Conference on Computer Aided Design, pp. 408-412, Nov. 1995.
- [3] Ting-Ting Hwang, R. M. Owens, M. J. Irwin, and Kuo Hua Wang, "Logic synthesis for field-programmable gate arrays," *IEEE Trans. Comput.-Aided Des. Integr. Circuits* Syst., Vol. 13, No. 10, pp. 1280-1287, Oct. 1994.
- [4] 井口幸洋, 笹尾勤, "LUT カスケード方式アーキテクチャ,"電子 情報通信学会 コンピュータシステム専門委員会 第2種研究会第
 1回 リコンフィギャラブルシステム研究会, 2003 年 9 月 18 日 ~19 日, 熊本大学.
- [5] J.-H. R. Jian, J.-Y. Jou, and J.-D. Huang, "Compatible class encoding in hyper-function decomposition for FPGA synthesis," *Design Automation Conference*, pp. 712-717, June 1998.
- [6] 草野将樹, 笹尾勤, 松浦宗寛, 井口幸洋, "順序回路方式 LUT カ スケードにおけるメモリパッキングについて,"電子情報通信学 会 VLSI 設計技術研究会, (発表予定), 小倉 (2003-11).
- [7] Y-T. Lai, M. Pedram and S. B. K. Vrudhula, "BDD based decomposition of logic functions with application to FPGA synthesis", 30th ACM/IEEE Design Automation Conference, June 1993.
- [8] A. Mishchenko and T. Sasao, "Logic Synthesis of LUT Cascades with Limited Rails," 電子情報通信学会 VLSI 設計技術 研究会, VLD2002-9, 琵琶湖 (2002-11).
- [9] S. Muroga, VLSI System Design, John Wiley & Sons, 1982, pages 293-306
- [10] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, Logic Synthesis for Field-Programmable Gate Arrays, Kluwer, 1995.
- [11] Qin Hui, 笹尾 勤, 松浦宗寛, 永山 忍, 中村和之, 井口幸洋, "順 序回路方式 LUT カスケードについて,"電子情報通信学会, 第2
 種研究会・第7回システム LSI ワークショップ, 2003 年 11 月 25 日 ~27 日, 北九州 (発表予定).
- [12] T. Sasao and M. Matsuura, "DECOMPOS: An integrated system for functional decomposition," 1998 International Workshop on Logic Synthesis, Lake Tahoe, June 1998.
- [13] T. Sasao, M. Matsuura, and Y. Iguchi, "A cascade realization of multiple-output function for reconfigurable hardware," *International Workshop on Logic and Synthe*sis(IWLS01), Lake Tahoe, CA, June 12-15, 2001, pp.225-230.
- [14] H. Sawada, T. Suyama, and A. Nagoya, "Logic synthesis for look-up table based FPGAs using functional decomposition and support minimization," *ICCAD*, pp. 353-359, Nov. 1995.
- [15] C. Scholl and P. Molitor, "Communication based FPGA synthesis for multi-output Boolean functions," Asia and South Pacific Design Automation Conference, pp. 279-287, Aug. 1995.
- [16] C. Scholl, R. Drechsler, and B. Becker, "Functional simulation using binary decision diagrams," *ICCAD'97*, pp. 8-12, Nov. 1997.
- [17] C. E. Shannon, "The synthesis of two-terminal switching circuits," *Bell Syst. Tech. J.* 28, 1, pp. 59-98, 1949.
- [18] B. Wurth, K. Eckl, and K. Anterich, "Functional multipleoutput decomposition: Theory and implicit algorithm," *De*
 - sign Automation Conf., pp. 54-59, June 1995.
- [19] http://www.xilinx.com