Thirty Six Years of EXOR Logic Synthesis:
Memoir

Tsutomu Sasao
Department of Computer Science
Meiji University, Kawasaki 214-8571, Japan

Abstract—This paper reviews the author’s research on EXOR
logic synthesis for the past 36 years. Topics include, AND-EXOR
minimization, AND-OR-EXOR minimization, index generation
functions, linear decomposition of index generation functions,
and synthesis of multiple-output linear circuits.

I. AND-EXOR LogGIC CIRCUIT

A. Philipp W. Besslich

In the fall of 1983, at the library of Osaka University, I
encountered a paper of Philipp W. Besslich from the University
of Bremen, Germany [4]. In that paper, he detected properties
of logic functions using spectrum transformation to simplify
logical expressions with many variables. Since I was interested
in the benchmark functions used in his paper, I wrote him a
letter with a list of questions. After that, we began to exchange
our knowledge.

About one year later, he sent me a letter that he wanted
to visit Japan to work with me by a fellowship sponsored
by the German Academic Exchange Service (DAAD) and the
Japan Society for the Promotion of Science (JSPS). Soon, he
successfully obtained the grant.

When he visited Osaka University in 1986, he brought a
Pascal program that simplified AND-EXOR expressions. The
algorithm first obtained the spectrum of the logic function
to detect features of the function, and then simplified the
AND-EXOR expression. At that time, I was not interested
in AND-EXOR expressions, and also was ignorant about the
spectral transformation of logic functions. However, after some
discussions with him, I noticed that a simplification method
for AND-OR expressions (MINI) can also be applied to AND-
EXOR expressions. In a few days, I developed a much faster
and more effective program than Besslich’s.

In addition to the logic minimizer, Besslich was interested
in the benchmark functions for AND-EXOR circuits. He pro-
posed symmetric functions S B(n, k) represented by EXORing
all products of k variables out of n variables. For example,
when n =4 and k = 2, SB(4,2) consists of (;1) = 6 logical
products:

SB(4,2) = x122 ® 123 D 124 D T2x3 D Toxg ® T3T4.

Let 7(SB(n,k)) be the minimum number of products in
an AND-EXOR expression (ESOP) to realize an SB(n, k)

TABLE 1.1
NUMBERS OF PRODUCTS TO REALIZE S B(n, k) FUNCTIONS
k
n|0]1]2 3 4 5 6 718
1111
2012 1
31113 3 1
4 11| 4 5 4 1
51115 8 8 5 1
6 | 1|6 111211 6 1
7111715191915 711
8 | 1|8 |20|3|30]|3|20]|8]|1

function. For example, a minimum ESOP for SB(4,2)! is
SB(4,2) = Z1Z274 © 2172T4 © T2T3 O 1173 © T3Ta,
Thus 7(SB(4,2)) = 5. Since
SB(n,k) =SB(n—1,k) ® 2,SB(n — 1,k —1),
we have the relation:
T(SB(n,k)) <7(SB(n—1,k))+ 7(SB(n — 1,k — 1)).

With my new AND-EXOR minimizer, we obtained the
number of products needed to represent SB(n, k) functions
by AND-EXOR expressions for different values of n and k.
Table 1.1? shows the number of products to realize SB(n, k)
functions by an ESOP, which is obtained by EXMIN2[62].

Also, I minimized AND-EXOR expressions for all the
representative classes of four variable functions.We found
that AND-EXOR expressions (ESOPs) require many fewer
products than AND-OR expressions (SOPs). We published this
result as an IEEE TC paper [57], that is one of the most cited
papers among our publications. Although Besslich stayed in
Japan only for one month, the outcome was remarkable.

As for the SB(n, k) function, many years later, I realized
that the function was considered by Yasuo Komamiya in
1959. Yasuo Komamiya attended the Japanese multiple-valued
logic workshop held in Shikanoshima Island in July 1990,
where Norio Koda presented our work on the simplification
of AND-EXOR expressions. After that, Komamiya sent me
his book and papers. In fact, the book and paper contain the
theory on SB(n, k) functions. Unfortunately, I realized it after

'Even for this simple function, an exact minimum ESOP is difficult to
derive by humans. In fact, Even-Kohavi-Paz falsely claimed that this function
required 6 products in their IEEE TEC paper [17].

2For some entries, minimality are not proved yet.

X;— — y2=SB(7,4)

2 —|

s — WGT7 | y1=5B(7,2)

o - L y0=S5B(7,1)
Fig. 1.1. WGT7.

Komamiya passed away>. His theory [31] is best illustrated by
the following:

Example 1.1: WGTT is a bit counting circuit [70] of 7
inputs. It has x1, 2, ..., x7 as inputs and ya, Y1, Yo as outputs
(Fig. 1.1). Then,

7
D wi =22y + 2y + 2%,

i=1
where + denotes an integer addition and concatenation is
integer multiplication. Komamiya’s theorem states that

y2 = SB(7,4) = E TiTjTRTL,
<j<k<l
w = SB(7,2)= Yoz,
1<J
7
v = SB(7,1)= Doz
=1

WGTT is also denoted by rd73, and is often used as a
benchmark function of logic synthesis. |
After Besslich returned to Germany, I developed an iter-
ative AND-EXOR minimizer called EXMIN. This can treat
multiple-valued input logic functions, and can simplify AND-
EXOR PLAs with input decoders. With this program, I de-
signed various benchmark functions, and showed that AND-
EXOR networks can be much simpler than corresponding
AND-OR networks for arithmetic circuits. Table 1.2 shows
the number of products to realize certain arithmetic functions®,
which is obtained by EXMIN2, an updated version of [62].

TABLE 1.2
NUMBERS OF PRODUCTS TO REALIZE ARITHMETIC FUNCTIONS
AND-OR | AND-EXOR
Ibit | 2bit | Ibit | 2bit
ADR4 75 17 31 11

MLP4 | 121 86 62 49
WGTS8 | 255 54 59 24

B. Reed-Muller Workshop

In April of 1988, I moved to the newly founded campus of
Kyushu Institute of Technology (KIT) in Iizuka City, Fukuoka,
Japan. As for the simplification of AND-EXOR expressions,
Norio Koda of Tokuyama Technical College spent a sabbatical
year in our group. We published several papers on the upper

3Since Komamiya’s work was not well known, Radomir S. Stankovic and
I wrote papers [96], [98], [99] to promote Komamiya’s work.
4For some entries, minimality are not proved yet.

Ve

Out

Fig. 2.1. CMOS Realization of an EXOR gate

and lower bounds on the number of products in AND-EXOR
expressions (ESOPs). After that, he became a Ph. D. student
of mine, and in 1996, he received his Ph.D. degree.

The impact of 1990 IEEE TC paper with Besslich [57]
was rather high. In 1993, Wolfgang Rosenstiel from Germany
informed me that he was organizing a Reed-Muller workshop
in Hamburg. So, I attended the workshop with Norio Koda.
The attendance at the Reed-Muller 1993 workshop was small,
but many key persons on decision diagrams and EXOR logic
gathered.

At the end of the workshop, we decided that the sec-
ond workshop would be held in 1995 in Makuhari, Chiba,
Japan. The organizers were myself and Masahiro Fujita® of
Fujitsu America Laboratory. We published a monograph [66]
in 1996, in addition to the workshop proceedings. So, we
invited authors whose papers become be chapters of the book.
The workshop site was provided by Fujitsu, and 1 obtained
several grants to support the travel expenses for overseas
attendees. We had many participants, and the workshop was
quite successful.

The 9th workshop was held in 2009 in Naha, Okinawa,
Japan. In this time, we published a monograph on Boolean
function [74], in addition to the proceedings. The 11th work-
shop was held in 2013 in Toyama, Japan. In this time, we
published a monograph on ZDDs [82].

II. AND-OR-EXOR LogGic CIRCUIT

In CMOS realizations, a two-input EXOR gate requires at
least 6 transistors (Fig. 2.1), while a two-input NAND gate
requires only four transistors. Also, the EXOR gate is slower
than the NAND gate. For this reason, EXOR logic circuits are
not so popular in industry. To overcome this disadvantage, I
developed the architecture shown in Fig. 2.2.

In this circuit, the function is represented by

f:Fl@FQ;

where I} and F, are realized by SOPs. Note that only one
two-input EXOR gate is required in the output, but its logical

SCurrently, University of Tokyo.

Fl
X —— AND-OR
S
D>
7
JE— F2
X AND-OR
Fig. 2.2. AND-OR-EXOR Realization[65]

power is amazing. Consider the function:

f=(x1Vaz)(zs Vry)(zs Vae)(zr Vas).

When f is implemented by an AND-OR circuit, 2* = 16
products are necessary. However, if we implement f, the
complement of f, then only four products is necessary as
follows:

f=Z1Z2V T3Zy V T5T V Trls.
Thus, f is represented as

f = (12 V T3T4 V T5Tg V T7Ts) & 1.

In Fig. 2.2, realize F; = f and F» = 1. Then, we need only
4+1 = 5 products®. In general, F» can be any logic function.

Table 2.1 compares the number of 4-variable functions that
require ¢ products [65]. AND-OR circuits (SOP) require up to
8 products, and require on the average, 4.13 products; AND-
EXOR circuits (ESOP) require up to 6 products, and require
on the average, 3.66 products; and, AND-OR-EXOR requires
up to 5 products, and require on the average, 3.62 products.

Also, AND-OR-EXOR circuits efficiently realizes adders.
Table 2.2 compares the number of products to realize n bit
adders. AND-OR-EXOR with 2-bit decoders requires only
n+ 1 EXOR gates, are as efficient as AND-EXOR with 2-bit
decoders.

In 1998, Debatosh Debnath’ from Bangladesh obtained his
Ph. D. degree on the research of AND-OR-EXOR three-level
logic circuits.

TABLE 2.1
NUMBER OF 4-VARIABLE FUNCTIONS THAT REQUIRES t PRODUCTS[65]

¢ | AND-OR | AND-EXOR | AND-OR-EXOR
0 I T T
1 81 81 81
2 1804 2268 2316
3 13472 21744 22896
4 28904 37530 37634
5 17032 3888 2608
6 3704 24 0
7 512 0 0
8 26 0 0
m I13 3.66 3.62

OThis is a kind of output phase optimization [70].
"Currently, Oakland University.

TABLE 2.2
NUMBER OF PRODUCTS TO REALIZE n-BIT ADDERS[65]

Architecture # of products n=4
AND-OR 6-2" —4n —5 75
AND-EXOR ontl 1 31
AND-OR with n? +1 17

2-bit decoders
AND-EXOR with
2-bit decoders

AND-OR-EXOR with
2-bit decoders

n? +n+2)/2 11

n? +n+2)/2 11

TABLE 3.1
EXAMPLE OF A REGISTERED VECTOR TABLE
Registered Vector Index
r1 T2 X3 T4 T 6 f
0 0 0 0 1 0 1
0 1 0 0 1 0 2
0 0 1 0 1 0 3
0 0 1 1 1 0 4
0 0 0 0 0 1 5

III. INDEX GENERATION FUNCTION

In 2002, the Cluster Project (the first stage) of the MEXT
(Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan) started. In the MEXT Cluster Project, we
received a large amount of research funds for many years.
The final goal was to develop a commercial product by doing
joint research with industry. At the end of the first stage of
the Cluster Project, Masayuki Chiba of YAMAHA Corporation
showed me a concept of index generator as the key device
in the network hardware.

An index generation function is an integer valued function:
{0,1}" —»{0,1,...,k}.

For example, in the case of n = 6 and k = 5, the function
maps k = 5 different two-valued vectors into k = 5 distinct
integers as shown by the example in Table 3.1.

An index generation function can be directly implemented
by a Content Addressable Memory (CAM), but CAMs dissi-
pate much power and are expensive.

Thus, I invented a better realization than CAM for this
function. The Index Generation Unit (IGU) shown in Fig. 3.1
can realize index generation functions quite efficiently. The
design problem of an IGU can be formulated as a minimiza-
tion problem of the variables for an incompletely specified
function. This method is quite efficient, and we can easily
implement a practical pattern matching network by using an
FPGA and memories. An IGU can easily implement a circuit
for k > 109. Furthermore, if we use a linear decomposition,
we can drastically reduce the size of the memory. With
this idea, we published many papers. Especially, there are
interesting mathematical problems, and it became a fruitful
research endeavor.

In 2011, T published a monograph [75] that summarizes
index generation functions.

p
M7h
Linear | P Main
circuit 7 memory AUX f
X2 74- memory
n-p
n-p//
X2 7‘» Comparator
n-p
Fig. 3.1. Index Generation Unit (IGU).
Linear General
Function Function
n p q
x<— L H G =
Cost: O(np) Cost: O(g2°)
Fig. 4.1. Linear Decomposition

IV. LINEAR DECOMPOSITION

In March 2013, I retired from Kyushu Institute of Technol-
ogy, Fukuoka, Japan, and from April 2013, become a professor
of Meiji University, Kanagawa, Japan. Mochinori Goto [20],
and Yasuo Komamiya [31], who developed the Japanese first
relay computer in 1952 [99], were professors there. Although
there were no Ph.D students, some M.S. students are very
good, and with the help of Yukihiro Iguchi, I could continue
my research work. Fortunately, I could obtain research grants
from JSPS all the years at Meiji. The decline of Japanese LSI
industry reduced students working for logic synthesis. So, I
sought new applications: logic synthesis for pattern matching
and data mining.

A linear decomposition® shown in Fig. 4.1 was first
developed by Nechiporuk in 1958 [46], [97]. In the linear
decomposition, L realizes linear functions, while G realizes
an arbitary function.

Definition 4.1: [23], [87]. An affine transformation of the
input variables x1, xs, ..., x, is defined as

8

Y1 = c10 D1 a2 B 133D ... B Ciny,

Y2 = C20 D 2171 D Co2X2 D o33 D ... D Con¥np,

Yn = Cno D Cn1iT1 © cpaTa ® Cp3®s © ... G Cpnn,

where ¢;; € {0,1}. Two logic functions f and g are A-
. . A . .
equivalent (affine-equivalent), denoted by f ~ ¢ if g is
8Linear transform and affine transform are often confused in switching

theory [70]. Nechiporuk considered affine transformation, but called it linear.
Functions y; in Definition 4.1 are affine. When c;o = 0, they are linear.

TABLE 4.1
NUMBERS OF EQUIVALENCE CLASSES OF LOGIC FUNCTIONS [87], [23]

Class | n=1|n=2|n=3| n=4 n=>5
ALL 4 16 256 | 65,536 | 4,294,967,296
L 4 8 20 92 2,744
A 3 5 10 32 382
TABLE 4.2

NUMBER OF VARIABLES TO REPRESENT m-OUT-OF-20 CODE TO BINARY
CONVERTER: BEST SOLUTIONS (n = 20) [86].

t : Max compound degree
k 1 2 3 4 5
20019 13 10 8 7
190 {19 14 12 10 9 9

1140 | 19 16 13 12 12

4845119 16 15 15 15 15

NI B

* denotes optimal solution proved by theorem.

obtained from f by an invertible affine transformation of
the input variables. When ¢;o = 0 for all + = 1,...,n, then
the transformation is linear.

Nechiporuk enumerated the affine equivalence classes of
logic functions for up to n = 5 variables. Also, he obtained
the minimum circuit for each representative function for
n = 4. Assume that linear transformation is freely available.
Then, one can select the most economical circuit (function),
among the logic functions in the equivalence class. Table
4.1 compares the number of different equivalence classes. L
denotes the linear transformation, and A denotes the affine
transformation. The numbers of affine equivalence classes are
denoted by A, and they are 32 for n = 4, and 382 for n = 5.

Nechiporuk used linear decomposition to realize completely
specified logic functions. On the other hand, I used lin-
ear decomposition to reduce the number of variables for
incompletely specified index generation functions [72]. I
also assume that the circuit is programmable. Thus, L is
implemented by EXOR gates, multiplexers and registers [75],
while G is implemented by a memory. The cost is measured
by the number of bits to store the functions. Thus, the cost for
L is O(np), while the cost for G is O(¢2P), where ¢ < p <mn
and ¢ = [log, k1. In this case, the minimization of the number
of the variables p for the memory is the key issue of the design.
After spending more than 10 years, we had the following:

Theorem 4.1: [89] Any incompletely specified index gen-
eration function with k registered vectors, can be represented
with at most p = [2log, k] — 2 variables, when a linear
decomposition is used.

The number of variables to represent an m-out-of-20 code
to binary number converter is investigated for different values
of compound degrees t, and for different values of m. The
original number of variables is n = 20. The number of
registered vectors is k = (i?), and the function requires at
least ¢ = [logy(k + 1)] variables. Table 4.2 compares the
results’. When the compound degree is one (t = 1), all the
converters required 19 variables. For m = 1,2 and 3, with
the increase of the compound degree ¢, the necessary number

For some entries, minimality are not proved yet.

of variables decreased. The entry with * denotes an optimum
solution proved by the lower bound [log,(k + 1)].

As shown in Table 4.2, linear decompositions of index
generation functions are quite effective.

V. MULTIPLE-OUTPUT LINEAR CIRCUITS

The index generation unit (IGU) contains a linear part. So,
I considered a design method for linear circuits consisting of
fan-in limited EXOR gates [88].

Example 5.1: Consider the following linear functions:

Y1 = T1 D22 D3 Dy
Y2 = X1 DT2Da3Drs
Y3 = X1 DT D a3 D g
Y = T1Dx2DT3DB7

The straightforward representation requires 4 x 4 = 16
literals. However, by extracting the common clause v =
1@ x2P w3, we have the following extracted representation:

u = T1Dx2Dx3
Y1 = udxy
Y2 = uduzxs
Yys = uDwg
Yya = udzy

Note that the extracted representation requires 344 x 2 = 11
literals. When the fan-in limitation of EXOR gates is p =
3, the straightforward realization (Fig. 5.1) requires 8 gates,
instead of 4 gates, since to implement a 4-input EXOR gate,
we need two EXOR gates. On the other hand, the extracted

realization (Fig. 5.2) requires only 5 gates. |
X1y x4—
X2 — - I
x3 yl yl
x4
x1 |
X2 — | x5]
x3 y2 I y2
x5 Y
x1
x1 _
x% — — x2 x6]
X y — -
. x3 y3
x1 __ g
X2 — —
x3 T va Xt I
xt v4
Fig. 5.1. Straightforward Fig. 5.2. Extracted Realization

Realization

An n-input m-output linear circuit can be designed using
a characteristic function of two variables, where the first
variable takes n values, while the second variable takes m
values.

Fig. 5.3 shows the map for the straightforward realization,
while Fig. 5.4 shows the map for the extracted realization.
Each loop corresponds to an EXOR gate. It shows the input

variables and output connections. For example, the top loop
in Fig. 5.3 corresponds to the top gate in Fig. 5.1. The inputs
of the gate are 1, x3, x3 and x4, and the output is connected
to y1. The large loop in Fig. 5.4 corresponds to the extracted
gate in Fig. 5.2. The inputs of the gate are x1, z2 and x3, and
the output is connected to y1,ys2,y3 and yy.

112(3|4|5|6]|7
1 [1]1]1]1)
x2| 2 [1[1]1 1
3 [1]1]1 1]
4 [1]1]1 1)

Fig. 5.3. Map for Straightforward Realization

X2

'_\
[N N N

1 @

Rl PP

Fig. 5.4. Map for Extracted Realization.

Example 5.2: Consider the function that appears in Exam-
ple 5.1. Fig. 5.5 shows the map for the non-disjoint EXOR
cover. In this map, the columns 4 and 5 are interchanged.
Note that the cells covered by two loops cancel each other.
Thus, this map represents the same characteristic functions as
Figs. 5.3 and 5.4. However, we have a different formulas:

Y2 = X1 DT2Da3Drs
Y1 = Y20r4Dxs
Ys = Y2D x5 Dxs
Yo = Y2 Dx5 Dy

In this case, the number of the connections is 13, which is
larger than that of the extracted solution shown in Fig. 5.4.
However, when the fan-in limitation is p = 4, it requires only
four EXOR gates, as shown in Fig. 5.6. []

X1
112 /,3 |5 4|67
11111
|21 1/1]
siaf1 2| L 11
a1 DL
Fig. 5.5. Map for non-disjoint EXOR cover-based realization.

x4

x1

X2

x3 y2
5 x5

X6] y3

X7]

Ny
Elp

y4

Fig. 5.6. Non-disjoint EXOR cover-based realization.

As shown in the examples, the design of a linear circuit can
be done on a map of a multi-valued two-variable characteristic
function. A multi-valued ESOP minimizer EXMIN2[62] was
used to find these solutions. Viva EXOR logic synthesis!

VI. CONCLUDING REMARKS

This paper briefly summarizes the authors research on
EXOR logic synthesis for the past 36 years. Part of the
material in this paper was taken from [70], [79], [86], [88].

1) AND-EXORs (ESOPs) realize symmetric functions and
adders more efficiently than AND-ORs (SOPs). An
arbitrary symmetric functions of n = 2r variables can be
represented by an ESOP with at most 2 -3"~! products,
while an SOP requires up to 2"~ ! products.

2) Heuristic ESOP minimizers are available, however an
exact minimum ESOP is hard to obtain. Unlike SOP,
lower bounds on the number of products in ESOP are
hard to obtain. Thus, the minimality of solutions of some
of the entries in Tables 1.1 and 1.2 are still not proved
yet.

3) In CMOS technology, an EXOR gate is more expensive
than a NAND (NOR) gate. However, in FPGAs, the
costs are the same.

4) AND-OR-EXOR is promising. One method is to repre-
sent a function f by an ESOP, and partition the products
into 7 groups so that each group is represented as a
disjoint SOP [60], and represent f by

f:Fl@F2@"'@Fr-

5) Linear decomposition is useful for index generation
functions. Heuristic minimizers for index generation
functions are available. However, exact minimum solu-
tions are still hard to obtain. Minimality of solutions of
some of entries in Table 4.2 are still not proved yet.

6) A multiple-output linear circuit can be design by its
characteristic function. However, the exact minimum
circuit is hard to derive.

7) Logic synthesis using linear decomposition requires the
knowledge of affine equivalence classes.

8) EXOR logic synthesis is more complicated than AND-
OR logic synthesis. To develop a new tool, knowledge
of group theory and spectral transform are helpful. To
find a useful theorem, many years are necessary.

ACKNOWLEDGMENTS

Mitch Thornton invited me for the talk, and motivated
to write this paper. Jon T. Butler carefully read the drafts
many times, and improved presentation. This research is partly
supported by Grant in Aid for Scientific Research of the Japan
Society for the Promotion of Science (JSPS).

BIBLIOGRAPHICAL NOTES

Classification of AND-EXORs [10], [21], [35], [57], [61],
[67]; PPRMs [31], [37], [53], [108]; FPRM minimization [5],
[6], [105]; PSDKRO minimization [63]; GRM minimization
[11], [68], [69]; ESOP heuristic minimization [8], [17], [18],
[24], [34], [54], [60], [62], [56], [94]; ESOP exact minimiza-
tion [25], [26], [30], [35], [49], [50], [64], [100]; other AND-
EXOR expressions [107]; EXOR multi-level logic networks
[101]; AND-OR-EXOR networks [12], [13], [14], [15], [65];
AND-EXOR test [51], [52], [69], [55], [93]; EXOR-AND-
OR expressions [9], [91], [33], [3]; multi-valued EXORs [16];
multi-output linear circuit [7], [19], [88]; minimization of vari-
ables for index generation functions by linear decomposition
(11, [21, [38], [39], [401, [41], [42], [71], [72], [73], [76], [77],
[78], [80], [81], [83], [84], [85], [85], [89], [90]; equivalence
class [22], [23], [32], [47], [87]; implementation of IGUs [43],
[44], [45]; and spectral techniques [27], [28], [101], [95],
[102], [104], [106].

Some publication names are abbreviated as follows: IEEE
for the Institute of Electrical and Electronics Engineers, IRE
for The Institute for Radio Engineers, IEE for The Institute
of Electrical Engineers (United Kingdom), IEICE for The
Institute of Electronics, Information and Communication Engi-
neers (Japan), TX for Transactions on X, (E)C for (Electronic)
Computers, CAD for Computer-Aided Design of Integrated
Circuits and Systems, IT for Information Theory, CE for
Communication and Electronics, CS for Circuits and Systems,
DAC for ACM/IEEE Design Automation Conference, ISMVL
for IEEE International Symposium on Multiple-Valued Logic,
ICCAD for IEEE International Conference on Computer
Aided Design, ICCD for IEEE International Conference on
Computer Design, ISCAS for IEEE International Symposium
on Circuits and Systems, IWLS for International Workshop

on Logic and Synthesis. ASPDAC for Asia-Pacific Design
Automation Conference, RM for Reed-Muller Workshop.

(11

[2]

(31

(41

[51
(6]

(71

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]
[16]

(17

[18]

[19]

[20]

[21]
[22]

[23]

[24]

REFERENCES

J. Astola, P. Astola, R. Stankovic and I. Tabus, “An algebraic approach
to reducing the number of variables of incompletely defined discrete
functions,” ISMVL, Sapporo, Japan, pp. 107-112, May 2016. Also, in
Journal of Multiple-Valued Logic and Soft Computing, Vol. 31, No. 3,
2018, pp. 239-253.

J. T. Astola, P. Astola, R. S. Stankovic, and L. Tabus, “Algebraic and
combinatorial methods for reducing the number of variables of partially
defined discrete functions,” ISMVL, Novi Sad, Serbia, pp. 167-172,
May 2017.

A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli, “Three-level logic
minimization based on function regularities,” IEEETCAD, Vol.22, No.
8, pp.1005-1016, Aug. 2003.

Ph. W. Besslich and P. Pichlbauer, “Fast transform procedure for the
generation of near minimal covers of Boolean functions,” IEE Proc.,
Vol. 128, Part E, No. 6, pp. 250-254, Nov. 1981.

Ph. W. Besslich, “Efficient computer method for ExOR logic design,”
IEE Proc., Vol. 130, Part E, pp. 203-206, Nov. 1983.

G. Bioul, M. Davio, and J. P. Deschamps, “Minimization of ring-sum
expansions of Boolean functions,” Philips Res. Rpts., Vol. 28, pp. 17-
36, 1973.

J. Boyarl, P. Matthews, and R. Peralta, “On the shortest linear straight-
line program for computing linear forms,” MFCS 2008, LNCS 5162,
pp.- 168-179, 2008.

D. Brand and T. Sasao, “Minimization of AND-EXOR expressions
using rewriting rules,” IEEE TC, Vol. 42, No. 5, pp. 568-576, May
1993.

V. Ciriani,“Synthesis of SPP three-level logic networks using affine
spaces,” IEEE TCAD, Vol. 22, No. 10, pp. 1310-1323, Oct. 2003.

M. Davio, J-P Deschamps, and A. Thayse, Discrete and Switching
Functions, McGraw-Hill International, 1978.

D. Debnath and T. Sasao, “GRMIN2: A heuristic simplification al-
gorithm for generalized Reed-Muller expressions,” IEE Proceedings-
Computers and Digital Techniques, Vol. 143, No. 6, pp. 376-384, Nov.
1996.

D. Debnath and T. Sasao, “Minimization of AND-OR-EXOR three-
level networks with AND gate sharing,” IEICE Trans. Information and
Systems, Vol. E80-D, No. 10, pp. 1001-1008, Oct. 1997.

D. Debnath and T. Sasao, “A heuristic algorithm to design AND-OR-
EXOR three-level networks,” ASP-DAC, pp. 69-74, Yokohama, Japan,
Feb. 1998.

E. V. Dubrova, D. M. Miller, and J. C. Muzio, “Upper bounds on the
number of products in AND-OR-EXOR expansion of logic functions,”
Electronics Letters, Vol. 31, No. 7, pp. 541-542, March 1995.

E. Dubrova, D. M. Miller, and J. Muzio, “AOXMIN-MV: A heuristic
algorithm for AND-OR-XOR minimization,”RM-1999,

G. Dueck and D. M. Miller, “A 4-valued PLA using the MOD SUM,”
ISMVL, pp. 232-240, May 1986.

S. Even, I. Kohavi, and A. Paz, “On minimal modulo-2 sum of products
for switching functions,” IEEE TEC, Vol. EC-16, pp. 671-674, Oct.
1967.

H. Fleisher, M. Tarvel, and J. Yeager, “A computer algorithm for
minimizing Reed-Muller canonical forms,” IEEE TC, Vol. C-36, No. 2,
Feb. 1987.

C. Fuhs and P. Schneider-Kamp, ”Synthesizing shortest linear straight-
line programs over GF(2) using SAT,” SAT-2010, pp.71-88, 2010.

M. Goto, “Applications of logical equations to the theory of relay
contact networks,” Electric Soc. of Japan (in Japanese), Vol. 69, p. 125,
April, 1949.

D. Green, Modern Logic Design, Addison-Wesley Publishing Com-
pany, 1986.

M. A. Harrison, Introduction to Switching and Automata Theory,
McGraw-Hill, 1965.

M. A. Harrison, “Counting theorems and their applications to clas-
sification of switching functions,” in A. Mukhopadhyay (ed.), Recent
Developments in Switching Theory, Academic Press, New York, 1971.
M. Helliwell and M. Perkowski, “A fast algorithm to minimize multi-
output mixed-polarity generalized Reed-Muller forms,” DAC, pp. 427-
432, 1988.

[25]

[26]

[27]
[28]

[29]

[30]

[39]

(401

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

T. Hirayama, Y. Nishitani and T. Sato, ” A Faster Algorithm of Mini-
mizing AND-EXOR Expressions,” IEICE on Fundamentals, Vol. E85-
A No. 12 pp. 2708-2714, Dec. 2002.

T. Hirayama and Y. Nishitani, “Exact minimization of and-exor expres-
sions of practical benchmark functions,” Journal of Circuits, Systems
and Computers, Vol. 18, No. 3, pp. 465-486, 2009.

S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques in
Digital Logic, Academic Press, London, 1985.

M. G. Karpovsky (ed.), Spectral Techniques and Fault Detection,
Academic Press, 1985.

O. Keren and I. Levin, “Linearization of multi-output logic functions
by ordering of the autocorrelation values,” FACTA UNIVERSITATIS
(NIS), Vol. 20, no. 3, December 2007, pp. 479-498.

N. Koda and T. Sasao, “Four-variable AND-EXOR minimum expres-
sions and their properties” (in Japanese), IEICE Trans., Vol. J74-D-1,
No. 11, pp.765-773, Nov., 1991. Also in System Computer of Japan
(U.S.A.), Vol. 23, No. 10, pp. 27-41, 1992 (English translation).

Y. Komamiya, Theory of Computing Networks, Researches of ETL,
Sept. 1959.

R. J. Lechner, “Harmonic analysis of switching functions,” in
A. Mukhopadhyay (ed.), Recent Developments in Switching Theory,
Academic Press, New York, 1971.

F. Luccio and L. Pagli, “On a new Boolean function with applications,”
IEEETC vol. 48, pp. 296-310, Mar. 1999.

A. Mishchenko and M. Perkowski, “Fast heuristic minimization of
exclusive-sums-of-products,” RM-2001, August 2001

A. Mukhopadhyay and G. Schmitz, “Minimization of exclusive OR
and logical equivalence of switching circuits,” IEEE TC, Vol. C-19,
No. 2, pp. 132-140, Feb. 1970.

A. Mukhopadhyay (ed.), Recent Developments in Switching Theory,
Academic Press, New York, 1971.

D. E. Muller, “Application of Boolean algebra to switching circuit
design and to error detection,” /RE TEC, Vol. EC-3, No. 3, pp. 6-12,
Sept. 1954.

S. Nagayama, T. Sasao, and J. T. Butler, “An efficient heuristic
algorithm for linear decomposition of index generation functions,”
ISMVL, May 2016, pp. 96-101.

S. Nagayama, T. Sasao and J. T. Butler, “An exact optimization
algorithm for linear decomposition of index generation functions,”
ISMVL, Novi Sad, Serbia, May 23, 2017, pp. 161-166.

S. Nagayama, T. Sasao, and J. T. Butler, “A balanced decision tree
based heuristic for linear decomposition of index generation functions,”
IEICE Trans. Inf. and Syst. Vol. E100, No. 88, pp. 1583-1591,
Aug. 2017.

S. Nagayama, T. Sasao and J. Butler, “An exact optimization method
using ZDDs for linear decomposition of index generation function,”
ISMVL, May 16-18, 2018, Linz, Austria.

S. Nagayama, T. Sasao and J. Butler, “A dynamic programming
based method for optimum linear decomposition of index generation
functions,” ISMVL, May 21-23, 2019, Fredericton, Canada.

H. Nakahara, T. Sasao, and M. Matsuura, “A virus scanning engine
using an MPU and an IGU based on row-shift decomposition,” IEICE
Transactions on Information and Systems, Vol. E96-D, No.8, Aug.
2013, pp. 1667-1675.

H. Nakahara,T. Sasao and M. Matsuura, “An update method for a CAM
emulator using an LUT cascade based on an EVMDD(k),” ISMVL,
Bremen, Germany, May 19-22, 2014, pp. 1-6.

H. Nakahara, T. Sasao, M. Matsuura, H. Iwamoto, and Y. Terao, “ A
memory-based IPv6 lookup architecture using parallel index generation
units,” IEICE Trans. Inf. and Syst. Vol. E98-D, No. 2, pp. 262-271,
Feb. 2015.

E. I. Nechiporuk, “On the synthesis of networks using linear trans-
formations of variables,” Dokl. AN SSSR, vol. 123, no. 4, pp. 610-612,
Dec. 1958 (in Russian).

I. Ninomiya, “A study of the structure of Boolean functions and its
application to the synthesis of switching circuits,” Men. Fac. Eng.,
Nagoya Univ., Vol. 13, Ph.D. Thesis, Univ. Tokyo, 1961. (Tables
reprinted in [22]).

T. Nozaki, Switching Theory (in Japanese), Kyoritsu Shuppan, 1972.
G. Papakonstantinou, “Minimization of modulo-2 sum of products,”
IEEE TC, C-28, pp. 163-167, 1979.

M. Perkowski and M. Chrzanowska-Jeske, “An exact algorithm to
minimize mixed-radix exclusive sums of products for incompletely
specified Boolean functions,” ISCAS, pp. 1652-1655, June 1990.

[59]

[60]
[61]

[62]

[63]

[64]

[65]
[66]
(671

[68]

[69]
[70]
[71]
[72]

[73]

[74]

(751
[76]

(77

[78]

[79]

[80]

[81]

D. K. Pradhan, “Universal test sets for multiple fault detection in AND-
EXOR arrays,” IEEE TC, Vol. C-27, No. 2, pp. 181-187, Feb. 1978.
S. M. Reddy, “Easily testable realization for logic functions,” IEEE
TC, Vol. C-21, No. 11, pp. 1083-1088, Nov. 1972.

I. S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” IRE TIT, PGIT-4, pp. 38-49, 1954.

J. P. Robinson and Chia-Lung Yeh, “A method for modulo-2 minimiza-
tion,” IEEE TC, Vol. C-31, No. 8, pp. 800-801, Aug. 1982.

K. K. Saluja and S. M. Reddy, “Fault detecting test sets for Reed-
Muller canonic networks,” IJEEE TC, Vol. C-24, No. 10, pp. 995-998,
Oct. 1975.

K. K. Saluja and E. H. Ong, “Minimization of Reed-Muller canonic
expansion,” /EEE TC, Vol. C-28, No. 7, pp. 535-537, July 1979.

T. Sasao and Ph. Besslich, “On the complexity of MOD-2 Sum PLA’s,”
IEEE TC, Vol. 39, No. 2, pp. 262-266, Feb. 1990.

T. Sasao, “ EXMIN: A simplification algorithm for exclusive-or sum-
of-products expressions for multiple-valued input two-valued output
functions,” ISMVL, Charlotte, North Carolina, pp. 128-135, May 1990.
T. Sasao (ed.), Logic Synthesis and Optimization, Kluwer Academic
Publishers, Boston, 1993,

T. Sasao, “Logic synthesis with EXOR logic gates,” Chapter 12 in [59].
T. Sasao, “AND-EXOR expressions and their optimization,” Chapter 13
in [59].

T. Sasao, “EXMIN2: A simplification algorithm for exclusive-OR-
sum-of-products expressions for multiple-valued input two-valued out-
put functions,” JEEE TCAD, Vol. 12, No. 5, pp. 621-632, May 1993.
T. Sasao, “Optimization of pseudo-Kronecker expressions using
multiple-place decision diagrams,” IEICE Transactions on Information
and Systems, Vol. E76-D, No. 5, pp. 562-570, May 1993.

T. Sasao, “An exact minimization of AND-EXOR expressions using
reduced covering functions,” Proc. of the Synthesis and Simulation
Meeting and International Interchange (SASIMI’'93), pp. 46-53, Oct.
1993.

T. Sasao, “A design method for AND-OR-EXOR three-level networks,”
IWLS, pp. 8:11-8:20, Tahoe City, California, May 1995.

T. Sasao and M. Fujita (ed.), Representation of Discrete Functions,
Kluwer Academic Publishers, Boston, 1996.

T. Sasao, “Representation of logic functions using EXOR operators,”
Chapter 2 in [66].

T. Sasao and D. Debnath, “Generalized Reed-Muller expressions:
Complexity and an exact minimization algorithm,” /IEICE Transactions
Fundamentals, Vol. ET9-A, No. 12, pp. 2123-2130, Dec. 1996.

T. Sasao, “Easily testable realizations for generalized Reed-Muller
expressions,” IEEE TC, Vol. 46, No. 6, pp. 709-716, June 1997.

T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999,

T. Sasao, “A design method of address generators using hash memo-
ries,” IWLS, Vail, Colorado, U.S.A, June 7-9, 2006, pp. 102-109.

T. Sasao, “On the number of variables to represent sparse logic func-
tions,” ICCAD, San Jose, California, USA, Nov.10-13, 2008, pp. 45-51.
T. Sasao, T. Nakamura, and M. Matsuura, “Representation of incom-
pletely specified index generation functions using minimal number
of compound variables,” 12th EUROMICRO Conference on Digital
System Design, Architectures, Methods and Tools, (DSD-2009), Aug.
2009, pp. 765-772.

T. Sasao and J. T. Butler, (eds.) Progress in Applications of Boolean
Functions, Morgan & Claypool Publishers, Jan 2010. pp.1-153.

T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

T. Sasao,“Index generation functions: Recent developments,” (invited
paper), ISMVL, Tuusula, Finland, May 23-25, 2011, pp. 1-9.

T. Sasao, “Linear decomposition of index generation functions,” ASP-
DAC, Jan. 30-Feb. 2, 2012, Sydney, Australia, pp. 781-788.

T. Sasao, “An application of autocorrelation functions to find linear
decompositions for incompletely specified index generation functions,”
ISMVL, Toyama, Japan, May 2013.

T. Sasao, “Forty years of logic synthesis: Memoir,” RM, May 24, 2013,
Toyama, Japan.

T. Sasao,“Multiple-valued index generation functions: Reduction of
variables by linear transformation,” Journal of Multiple-Valued Logic
and Soft Computing, Vol. 21, No.5-6, pp. 541-559, 2013.

T. Sasao, “Index generation functions: Tutorial,” Journal of Multiple-
Valued Logic and Soft Computing, Vol. 23, No.3-4, pp. 235-263, 2014.

[82]

[83]

[84]

[85

—_

[86]
(871
[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

T. Sasao and J. T. Butler, Applications of Zero-Suppressed Decision
Diagrams, Synthesis Lectures on Digital Circuits and Systems, 2015,
123 pages, Morgan-Claypool.

T. Sasao, “A reduction method for the number of variables to repre-
sent index generation functions: s-Min method,” ISMVL, May 2015,
pp. 164-169.

T. Sasao, I. Fumishi, and Y. Iguchi, “A method to minimize variables
for incompletely specified index generation functions using a SAT
solver,” JWLS, Mountain View, June 12-13, 2015, pp. 161-167.

T. Sasao, “A linear decomposition of index generation functions:
Optimization using autocorrelation functions,” Journal of Multiple-
Valued Logic and Soft Computing, Vol. 28, No. 1, pp. 105-127, 2017.
T. Sasao, “Index generation functions: Minimization methods,” ISMVL,
Novi Sad, Serbia, May 23, 2017, pp. 197-206. (invited).

T. Sasao and M. Maeta, “On affine equivalence of logic functions,”
IWLS, Austin, Texas, June 2017.

T. Sasao, “A logic synthesis for multiple-output linear circuits,” IWLS,
San Francisco, June 23-24, 2018.

T. Sasao,“An improved upper bound on the number of variables to
represent index generation functions,” /WLS, Lausanne, Switzerland,
June 21-23, 2019.

T. Sasao, K. Matsuura, and Y. Iguchi, “On irreducible index generation
functions,” IWLS, Lausanne, Switzerland, June 21-23, 2019.

B. Schaeffer,“Product transformation and heuristic EXOR-AND-OR
logic synthesis of incompletely specified functions,” IEEE TCAD,
Vol. 36, No. 11, pp. 1831-1841, Nov. 2017.

D. A. Simovici, D. Pletea, and R. Vetro, “Information-theoretical
mining of determining sets for partially defined functions,” ISMVL-
2010, May 2010, pp. 294-299.

S. C. Seth and K. L. Kodandapani, “Diagnosis of faults in linear tree
networks,” IEEE TC, Vol. C-26, No. 1, pp. 29-33, Jan. 1977.

N. Song and M. A. Perkowski, “Minimization of exclusive sum of
products expressions for multiple-valued input, incompletely specified
functions,” IEEE TCAD, Vol. CAD-15, No. 4, pp. 385-395, April 1996.
S. Stankovié, T. Sasao, and C. Moraga, “Spectral transforms decision
diagrams,” Chapter 3 in [66].

R. S. Stankovic and T. Sasao, “A discussion on the history of research
in arithmetic and Reed-Muller expressions,” IEEE TCAD, Vol. 20, No.
9, Sept. 2001, pp. 1177-1179.

R. S. Stankovic and J. Astola (eds.) E. I. Nechiporuk, “Network
synthesis by using linear transformation of variables,” in Reprints from
the Early Days of Information Sciences, Tampere International Center
for Signal Processing, Tampere 2007.

R. S. Stankovic, T. Sasao, and J. T. Astola, “Contributions of Yasuo
Komamiya to switching theory,”’RM, May 21, 2015, Waterloo, Ontario,
Canada.

R. S. Stankovic, T. Sasao, J. T. Astola, and A. Yamada, “Remarks
on the design of first digital computer in Japan - Contributions of
Yasuo Komamiya,” 17th International Conference on Computer Aided
Systems Theory, Las Palmas de Gran Canaria, Spain, 17-22 Feb. 2019.
S. Stergiou and G. Papakonstantinou, “Exact minimization of ESOP
expressions with less than eight product terms,” Journal of Circuits,
Systems and Computers, Vol. 13, No. 1, pp. 1-15, 2004.

M. A. Thornton and V. S. S. Nair, “BDD-based spectral approach
for Reed-Muller circuit realization,” IEE Proc. Comput. Digt. Tech.,
Vol. 143, No. 2, pp. 145-150, March 1996.

M. A. Thornton, R. Drechsler, and D. M. Miller, Spectral techniques
in VLSI CAD, Springer Science & Business Media, 2012.

C-C. Tsai and M. Marek-Sadowska, “Generalized Reed-Muller forms
as a tool to detect symmetries,” IEEE TC., Vol. 45, No. 1, pp. 33-40,
Jan. 1996.

D. Varma and E. Trachtenberg, “Design automation tools for efficient
implementation of logic functions by decomposition,” IEEE TCAD,
Vol.8, No.8, pp.901-916, 1989.

D. Varma and E. A. Trachtenberg, “Computation of Reed-Muller
expansions of incompletely specified Boolean functions from reduced
representation,” /EE, Part E, Vol. 138, No. 2, pp. 85-92, March 1991.
D. Varma and E. A. Trachtenberg, “Efficient spectral techniques for
logic synthesis,” Chapter 10 in [59], pp. 215-232.

X. Wu, X. Chen, and S. L. Hurst, “Mapping of Reed-Muller coefficients
and the minimisation of Exclusive-OR switching functions,” /EE, Part
E, Vol. 129, pp. 15-20, 1982.

I. I. Zhegalkin, “The technique of calculation of statements in symbolic
logic,” (in Russian) Mathe. Sbornik, Vol. 34, pp. 9-28, 1927.

