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Abstract

An n-variable Boolean logic function f(~x) is sensitive to
xi if there is at least one assignment of values to ~x − {xi}
such that f changes when xi changes. We investigate the
sensitivity of Boolean logic functions experimentally. For
example, we show the use of a reconfigurable computer in
computing the sensitivity of n-variable Boolean functions
with up through n = 5 variables. For n = 5, this compu-
tation is 193 times faster than a single Xeon microproces-
sor and 1.8 times faster than a cluster computer with 256
processors. We also examine sensitivity in multiple-valued
logic functions.

Index Terms: Sensitivity, Boolean function complexity,
symmetric functions, reconfigurable computer, P equals NP.

1 Introduction

The question “Does P equal NP?” has been the focus of
much research since it was posed by Cook [4] in 1971. It
has been suggested that the answer will likely come from a
better understanding of Boolean functions. Indeed, Sipser
[10] says “Many researchers consider circuit complexity
to be the most viable direction for resolving the P versus
NP question”. There is much research on the complexity
of Boolean functions in the realization of specific classes
of functions, including symmetric and monotone functions.
Complexity measures include the number of products in
minimum sum-of-products expressions, length of the short-
est path in a decision diagram (also called query length),
and sensitivity. We say that the i-th bit of an input vec-
tor is sensitive if complementing the bit complements the
function. We say that an n-variable function f(~x) is sen-
sitive to xi if there exists at least one assignment of values
to ~x − {xi} (also written as ~x \ {xi}) such that f changes
when xi changes. The sensitivity of the input vector is the
number of bits for which it is sensitive. The sensitivity of

the function is the maximum of the sensitivities among its
input vectors.

Readers familiar with the concept of Boolean differences
may recognize a resemblance to sensitivity. In spite of this
resemblance, there has been little, if any, cross research.
One goal of this paper is to introduce logic designers to this
interesting topic.

Cook, Dwork, and Reischuk [5] suggest sensitivity as a
complexity measure of Boolean functions CREW PRAM
(Concurrent Read Exclusive Write Programmable Random
Access Machine), a model for multi-processors, each pro-
cessor with a RAM, and a common tape. Nisan [7] extended
this concept to block sensitivity and showed that CREW
PRAM complexity and block sensitivity are polynomially
related; i.e. the time complexity of one can be bounded
above by a polynomial of the time complexity of the other.
Similarly, block sensitivity has been shown to be polynomi-
ally related to other Boolean function complexity measures,
such as query length complexity. However, no one had, up
to that point, shown that sensitivity is polynomially related
to other complexity measures. This left open the question of
whether there exists a function with exponential sensitivity.
In 2019, Huang [6] answered this question by proving that
sensitivity and block sensitivity are polynomially related. In
2017, Amano [1] computed the number of NPN classes [9]
of functions with sensitivity 3 for n-variable functions for
n ≥ 3. A discussion of research in sensitivity up to 2005
appears in Chakraborty [3].

2 Background

Definition 2.1. Let f{0, 1}n → {0, 1} be a Boolean logic
function, and let ~x ∈ {0, 1}n be an n-bit input vector. In-
put vector ~y is a neighbor of ~x if ~y differs by exactly one
bit from ~x. s(f, ~x), the sensitivity of ~x, is the number of
neighbors ~y of ~x, such that f(~x) 6= f(~y).
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Figure 1. Distribution of Non-degenerate
Boolean Logic Functions According to Sen-
sitivity and Number of Variables n.

Example 2.1. Note that 0 ≤ s(f, ~x) ≤ n. For exam-
ple, if f is the AND function on n ≥ 2 variables, then
for ~x = 11 . . . 1, all bits are sensitive, and s(f, ~x) = n.
On the other hand, for ~x = 00 . . . 0, s(f, ~x) = 0. In
an example by Ramsey [8], f is the totally symmetric 8-
variable function that is 1 iff 4 or 5 variables are 1. For
~x = 11100000, s(f, ~x) = 5, since changing any of the five
0’s to a 1 changes f , and changing any 1 to 0 leaves f un-
changed.

Definition 2.2. The sensitivity of a function f , s(f), is the
maximum of s(f, ~x) across all choices of ~x. The sensitivity
s(F ) of a set of functions F is the minimum of s(f) over all
f ∈ F .

Example 2.2. s(f) = n, where f is the n-variable AND
function, since ~x = 11 . . . 1 has s(f, ~x) = n, the maximum.
In the case of Ramsey’s function f , s(f) = 6, since s(f, ~x)
is maximum when ~x = 11111100.

The term “critical complexity” has been used instead of
“sensitivity” (e.g. Wegener [12]), but “sensitivity” seems to
be more commonly used now.

A Verilog program was written to enumerate n-variable
functions for 2 ≤ n ≤ 5 on an SRC-6 reconfigurable com-
puter (viz. Butler [2]) according to their sensitivity. It was
compiled by Synplify Pro® and run on a 100 MHz Xilinx-II
FPGA. We chose to do the computation on an FPGA be-
cause other computations have performed well in similar
scientific investigations. For example, to count the func-
tions with various sensitivities, a reconfigurable computer
uses an FPGA to implement a hardware counter for each

Figure 2. Distribution of Non-degenerate
Monotone Boolean Logic Functions Accord-
ing to Sensitivity and Number of Variables n.

sensitivity. Because the implementation is so efficient com-
pared to a software program, a 100 MHz FPGA performs
much faster than a single processor. This same computation
was done on an Intel Pentium Xeon 2.8 GHz single CPU
microprocessor from a program written in C.

3 Experimental Results

Fig. 1 shows the result. It should be noted that the
functions depend on all variables (are non-degenerate func-
tions). So, for example, while there are 22

2

= 16 functions
on two or fewer variables, Fig. 1 shows only 10, which
are the 10 that depend on both variables. Similarly, Fig. 2
shows the distribution of monotone Boolean logic functions
according to their sensitivity. Again, all functions in the dis-
tribution depend on all n variables. There are considerably
fewer functions with this restriction. Note that there are ex-
actly two functions with largest sensitivity n. These are the
AND and OR function on all variables.

Tables 1 and 2 show the computation times. Two times
are shown, the total computation time of all functions and
the average computation times per function. As n increases,
this approaches 10.0 ns for functions computed by the SRC-
6. This reflects the fact that for large circuits on the SRC-6,
we can still achieve a sensitivity computation of one per
clock period, where the clock period of 10 ns corresponds
to a 100 MHz clock speed. Table 2 shows how the SRC-6
compares to a cluster machine of AMD processors when
1, 4, 16, 64, and 256 processors are used. These times
are walltimes and are affected by the running of other jobs



Table 1. Computation Times of Sensitivity by SRC-6 and a Xeon Microprocessor
All Functions Each Function

n SRC-6 Xeon SRC-6 Xeon Speedup
2 970 ns 2120 ns 60.6 ns 133.8 ns 2×
3 3,430 ns 110,000 ns 13.4 ns 429.7 ns 32×
4 656,330 ns 62,100,000 ns 10.0 ns 947.6 ns 95×
5 42.95 sec 8267.7 sec 10.0 ns 1925.0 ns 193×

Table 2. Computation Time for Sensitivity of a Function Using the SRC-6 Reconfigurable Computer
and an AMD Cluster Machine (Times are the Average Per Function Over All n-Variable Functions)

# of Reconfig. AMD Cluster Machine
Variables Computer Number of Processors

n SRC-6 1 4 16 64 256
2 60.6 ns 188.4 ns 60.9 ns 33.5 ns * *
3 13.4 ns 433.1 ns 138.0 ns 50.1 ns 12.4 ns 3.3 ns
4 10.0 ns 1,028.1 ns 347.0 ns 129.1 ns 35.5 ns 9.1 ns
5 10.0 ns 2,463.3 ns 842.9 ns 317.6 ns 70.9 ns 18.4 ns

* This corresponds to more processors than there are n-variable functions.

on the system. We show the time required by the slowest
processor, which is not as robust as the average processor
time. So, one must view these times as approximate. How-
ever, scaling is evident. For example, if we fix the value
of n, the number of variables, then there is a reduction to
roughly 25% of the computation time as the number of pro-
cessors increases by a factor of 4. That is, the computa-
tion is embarrassingly parallel. Specifically, computation
of the sensitivity of any function is independent of the sen-
sitivity computation of any other function. Therefore, the
computation can be divided evenly so that the workload is
perfectly balanced across all processors, provided that there
are a power of 2 number of processors.

Also evident in the data of Table 2 is the fact that the
computation time per function for the AMD cluster machine
approximately doubles as n is increased by 1. Specifically,
the sensitivity is computed by computing the sensitivity of
each assignment of values to the variables, taking the max-
imum value. As n increases by 1, the number of assign-
ments doubles. Therefore, the work doubles. It is inter-
esting that the SRC-6 computation times remains constant
(at 10 ns per function) as n increases by 1. The reason for
this is that, each increase by 1 simply doubles the hardware
needed to do the computation, and not the time. We are us-
ing only a small part of the FPGA, and the logic resources
used are much less than the maximum available. If the max-
imum resources are reached, then the circuit would have to
be configured so that the hardware operates serially on the
assignments.

4 Multiple-Valued Symmetric Functions

Definition 4.3. Let f{0, 1, . . . , r − 1}n → {0, 1, . . . r −
1} be a multiple-valued logic function, and let ~x ∈
{0, 1, . . . , r − 1}n be an n-digit input vector. Input vector
~y is a neighbor of ~x if ~y differs at exactly one digit from ~x.
s(f, ~x), the sensitivity of ~x, is the number of neighbors ~y of
~x, such that f(~x) 6= f(~y). In tallying the sensitivity of ~x, a
digit contributes at most 1 even when the difference is more
than 1. For example, if the function value of 210 differs from
that of 110 and 010, the leftmost digit contributes 1 to the
sensitivity of 210, not 2. Stated formally, the sensitivity of
multiple-valued function f is max~x∈{0,1,...,r−1}n s(f, ~x).

Functions of interest in the complexity theory com-
munity include the symmetric functions, Nisan[7] and
Wegener[12].

Definition 4.4. A symmetric function is unchanged by any
permutation of the variable values.

Consider Fig. 3a. This shows a 4-variable symmetric
Boolean function that is 1 iff two or more variables are 1.
Here, each node corresponds to a single input vector. For
example, the node labeled ’0011’ represents x1x2x3x4 =
0011. This node is assigned ’1’, which means that the func-
tion is 1 when x1x2x3x4 = 0011. This is shown by a green
circle with a white 1 inside. The edges represent input vec-
tors that are neighbors of each other. That is, 0011 is a
neighbor of 0111, 1011, 0010, and 0001. Thus, 0011 is sen-
sitive to two of the four variables, x3 and x4, because two



nodes, 0010 and 0001 map to 0, which is the complement
of 0011’s function value 1. The other two nodes for which
0011 is a neighbor, 1011 and 0111, map to the same func-
tion value as 0011, and so 0011 is not sensitive to a change
in x1 or x2.
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a) Lattice Representation b) Compact

Figure 3. Lattice Representation of a Boolean
Symmetric Function and its Compact Form.

Fig. 3b shows a compact version of Fig. 3a. In Fig. 3b,
one node represents multiple nodes in Fig. 3a. For example,
because Fig. 3a represents a symmetric function, the six
nodes in Fig. 3a, 1100, 1010, 1001, 0110, 0101, and 0011
must map to the same function value; 1 in this example.

In Fig. 3b, all of these nodes are represented by one
node, labeled 1100. As in Fig. 3a, the number in the circle
of a node specifies the function value mapped to by the input
vector(s) of that node.

The edges in Figs. 3a and 3b specify neighbors; the
nodes at two ends of a edge are a distance 1 from each
other and designate input vectors that are neighbors. The
small red dots specify how the edges interconnect between
nodes. For example, in Fig. 3b, two red dots extend down
from the node 1100 to 1000, while three red dots extend up
from 1000 to 1100. This specifies that node 1100 in Fig.
3a is a neighbor of two nodes with one fewer 1. Similarly,
the three red dots extending up from node 1000 in Fig. 3b
specify that each node with one 1 in Fig. 3a is a neighbor
of three nodes each with two 1’s in Fig. 3a.

From this information, we can determine the sensitivity
of the function shown in Fig. 3b. First, note that the only

edges that specify the sensitivity are between the 1100 and
1000 levels. All other edges connect two nodes that map
to the same function value. So, complementing a variable
value leaves the function unchanged. The maximum of the
sensitivity between the 1100 and 1000 levels is 3, and so
the function’s sensitivity is 3. Note that a red edge connects
two input vectors that map to different function values. A
black edge connects two input vectors that map to the same
function value.
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Figure 4. Lattice Representation of a 3-Valued
4-Variable Symmetric Function in Its Com-
pact Form.

Fig. 4 shows a 3-valued 4-variable symmetric function
using the compact representation. That is, each node repre-
sents all arrangements of the logic values shown. For exam-
ple, 2200 corresponds to the six nodes, 2200, 2020, 2002,
0220, 0202, and 0022 in the full lattice representation of
this function. Since the function is symmetric, f(2200) =
f(2020) = f(2002) = f(0220) = f(0202) = f(0022).
Since one node, not six, are needed to represent its func-
tion value, it follows that the compact version of the lat-
tice structure requires fewer nodes. Indeed, this structure
requires 15 nodes. That is, each node in the compact struc-
ture represents one of n = 4 ways to choose r = 3 values
with repetition. This is

(
n+r−1

n

)
=

(
4+3−1

4

)
= 15.

In this case, the edges, nodes, and red dots serve the
same purpose as they do in Fig. 3b. A significant reduc-
tion in complexity has been achieved. For example, instead
of 34 = 81 nodes, only 15 nodes are needed to represent a
3-valued 4-variable symmetric function. The example func-
tion maps three nodes to 0 (shown as a blue circle) and 12
nodes to 2 (shown as black circles). No node maps to 1 (to
remind the reader that this is a multiple-valued function).

Table 3 shows the distribution of sensitivity values for
all 3-valued 4-variable symmetric functions. This was com-
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Table 3. Distribution of Sensitivities of 3-
Valued 4-Variable Symmetric Functions

puted by a MATLAB program that enumerated all func-
tions. Included are constant functions, in which all input
vectors map to the same value, either 0, 1, or 2. Strictly
speaking, these are not 4-variable functions. However, all
other 315 − 3 functions are dependent on all four variables.
Among these functions, the smallest sensitivity is 3. Thus,
the sensitivity of 4-variable 3-valued functions is 3. One of
these functions is shown in Fig. 4.

We count functions according to sensitivity, as follows.
Consider first the function shown in Fig. 4. It produces
two of a possible three function values. One is 0, which is
produced by the three input vectors, 0000, 1000, and 2000.
The other is 2, which is produced by all of the other 12 in-
put vectors. Each edge connects input vectors that differ in
one (of four) input values. For example, the edge between

2100 and 1000 differs between a 2 in the former and a 0 in
the latter. The three red dots on this edge specify that, in
the underlying lattice, the single 2 of 2100 can replace one
of three 0’s in 1000. Because the two input vectors map to
different function values, they contribute three to this func-
tion’s sensitivity. Similarly, 1000 and 1100 contribute 3 to
the function’s sensitivity. However, the combined sensitiv-
ity is 3, effectively the OR of the two sensitivities, since the
2 of 2100 or the leftmost 1 of 1100 can be replaced by a 0
of 1000 (This can be better seen by viewing 2100 as 1200).
From these observations, we can conclude that input vec-
tor 1000 has sensitivity 3. Similarly, we can conclude that
2000 also has sensitivity 3. Input vector 0000 has sensitivity
0 since all (both) edges incident to it are also incident to an
input vector that maps to the same function value as 0000. A
similar argument concludes that 2100 has sensitivity 2. All
other input vectors are adjacent to input vectors that map
to the same function value, and therefore have sensitivity 0.
Thus, among all input vectors that maximum sensitivity is
3. Thus, this function has sensitivity 3.

This is only one case among 315 = 14, 348, 907. By
rotational symmetry, we can specify other functions whose
sensitivity is 3. Specifically, the small triangle, 0000, 1000,
and 2000 in the case of the example above, can occur in
three ways. Its function value can be chosen in three ways.
And, the remaining 12 function values can be chosen in two
ways. Thus, there are a total of 3 × 3 × 2 = 18 ways the
ensemble can be chosen.

Because triangles of the type described above do not
overlap, it is tempting to believe that two or three triangles
similar to 0000, 1000, and 2000 can occur in the same func-
tion. For example, suppose a small triangle such as 1111,
1110, and 2111 exists, in addition to 0000, 1000, and 2000.
Then, 1100 is adjacent to two nodes, 1000 and 1110, that
map to function values that are different from the function
value to which 1110 maps. Indeed, the two red dots on
edges from 1100 to 1000 and 1110 indicate that a total con-
tribution of 4 to the sensitivity of 1100. Thus, the sensitivity
of such a function is 4. Fig. 5 shows the lattice representa-
tion of the neighborhood around 1100. It can be seen that
all four logic values of 1100 are sensitive. That is, changing
any one of these values changes the function value. Thus,
the sensitivity of this function is 4. Therefore, we cannot
count such functions towards the tally of those that have
sensitivity 3.

We have referred to the above assignment of function
values to input vectors as a “small” triangle. We shall refer
to a 3 × 3 × 3 version as a “large” triangle. The third row
of Table 3 shows this case. Here, overlap among large tri-
angles precludes more than one large triangle per function.
For example, in the case of large triangle 0000, 1000, 1100,
2000, 2100 and 2200, input vectors 2220 and 1110 have
sensitivity 3, while all others have a lower sensitivity. By
similar arguments to those used in small triangles, the func-
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tice Representation

tion’s sensitivity is also 3, and there are 18 such triangles,
just as in the case of small triangles.

The fourth row of Table 3 shows a “large” triangle with
two special vertices indicated by a black dot enclosed by a
blue circle, which corresponds to either a blue vertex on one
end or a black vertex on the other. By an analysis similar to
that applied to the third row, a function with such a triangle
has sensitivity 3. There are 36 such triangles.

The fifth row has the same partial triangles as shown in
the fourth row and represent still another way to form a tri-
angle with sensitivity 3.

The last row in Table 3 consists of all remaining trian-
gles, which is represented by a single input vector. Such a
vector is surrounded by input vectors all of which map to a
different function value.

5 Concluding Remarks

The study of sensitivity in Boolean logic functions has
been restricted to researchers in complexity theory. We be-
lieve that sensitivity in Boolean and multiple-valued logic
functions merits a closer examination by researchers in
logic design. We show that a reconfigurable computer is
useful in the study of sensitivity. We achieve a speed-up
of 193 times faster than a single Xeon microprocessor. We
show a cluster computer with 256 processors is also useful.
Additionally, we examine the computation of sensitivity in
multiple-valued symmetric functions, showing that a com-
pact representation is useful in understanding sensitivity in
such functions.
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