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Abstract—A universal interconnection network implements ar-
bitrary interconnections among n terminals. This paper considers
a problem to realize such a network using contact switches.
When n = 2, it can be implemented with a single switch. The
number of different connections among n terminals is given by
the Bell number B(n). The Bell number shows the total number
of methods to partition n distinct elements. For n = 2, 3, 4, 5
and 6, the corresponding Bell numbers are 2, 5, 15, 52, and 203,
respectively. This paper shows a method to realize an n terminal
universal interconnection network with 3

8
(n2−1) contact switches

when n = 2m + 1 ≥ 5, and n
8
(3n + 2) contact switches,

when n = 2m ≥ 6. Also, it shows a lower bound on the
number of contact switches to realize an n-terminal universal
interconnection network.

Index Terms—interconnection network, partition number, Bell
number, complexity of circuits, contact switch, multi-position
switch, universal network, contact network

I. INTRODUCTION

Problem 1.1: Consider a controller of a solar energy system
consisting of the following seven units:

1) Solar panel 1
2) Solar panel 2
3) Rechargeable battery unit 1
4) Rechargeable battery unit 2
5) Load unit 1
6) Load unit 2
7) Voltage meter unit

We need to change the interconnections among these units
depending on various conditions. What kind of network should
be used to allow necessary connections?

This problem can be solved by using a universal intercon-
nection network among seven terminals.

In this paper, we show that to implement an n-terminal
universal interconnection network, 3

8 (n
2−1) contact switches

when n = 2m + 1 ≥ 5, and n
8 (3n + 2) contact switches,

when n = 2m ≥ 6, are sufficient. The rest of this paper
is organized as follows: Section II introduces terminology
used in this paper. Section III shows a method to realize
a universal interconnection network. Section IV shows a
realization of universal interconnection network using multi-
position switches. Section V concludes the paper, and shows
future problems. And, Section VI surveys related research.

II. DEFINITIONS AND BASIC PROPERTIES

This section defines terminology used in this paper.
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Fig. 2.1. Contact Switch

Definition 2.1: Fig. 2.1 shows a contact switch. When x =
0, the terminal a is disconnected from the terminal b. When
x = 1, the terminal a is connected to the terminal b. It is also
called a single-pole single-throw switch.

A contact switch can be implemented by a magnetic relay
[13], [9], MEMS, or semiconductors.

A contact switch is bidirectional, i.e, the terminals con-
nected together have the same electrical potential. Thus, an
analog signal can be transmitted. Since only contact switches
are used in this paper, a contact switch is simply called a
switch.

Definition 2.2: A partition of a set S is a set of non-null
subsets of S. Each element in S belongs to exactly one of
these subsets. An element of a partition is called a block.

Example 2.1: The set S = {1, 2} has two partitions:
{[1], [2]} and {[1, 2]}.

Example 2.2: The set S = {1, 2, 3} has five parti-
tions: {[1], [2], [3]}, {[1, 2], [3]}, {[1, 3], [2]}, {[1], [2, 3]}, and
{[1, 2, 3]}.

Example 2.3: The set S = {1, 2, 3, 4} has the
following 15 partitions: {[1], [2], [3], [4]}, {[1, 2], [3], [4]},
{[1, 3], [2], [4]}, {[1], [2, 3], [4]}, {[1, 2, 3], [4]}, {[1, 4], [2], [3]},
{[1, 2, 4], [3]}, {[1, 3, 4], [2]}, {[1, 4], [2, 3]}, {[1, 2, 3, 4]},
{[1], [2, 4], [3]}, {[1, 3], [2, 4]}, {[1], [2, 3, 4]}, {[1], [2], [3, 4]},
and {[1, 2], [3, 4]}.

Definition 2.3: The number of partitions of a set of n dis-
tinguishable elements into non-empty, indistinguishable boxes
is the Bell number. It is denoted by B(n).

Table 2.1 shows the values of B(n) for n = 2, 3, . . . , 8.
The n-th Bell number B(n) is given by the following

recurrence relation [4]:

B(n+ 1) =

n∑
k=0

(
n

k

)
B(k).
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TABLE 2.1
BELL NUMBERS B(n)

n B(n)
2 2
3 5
4 15
5 52
6 203
7 877
8 4140
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Fig. 3.1. Three-terminal Universal Interconnection Network U(3)

Definition 2.4: An n-terminal universal interconnection
network U(n) realizes arbitrary interconnections among n
terminals. It realizes B(n) different connection patterns.

III. REALIZATION OF UNIVERSAL INTERCONNECTION

NETWORKS

A. Upper Bound on the Number of Switches

Lemma 3.1: A 3-terminal universal interconnection network
U(3) can be realized with three switches.

(Proof) Consider the circuit in Fig. 3.1. It shows the state
where all the switches are in the open states. This state is
selected when the control inputs are (x1, x2, x3) = (0, 0, 0).
In this state, all the terminals are isolated. In this case, the
network realizes the partition {[1], [2], [3]}. For other states
can be realized as shown in Table 3.1. �

TABLE 3.1
COMBINATION TABLE FOR U(3)

Class x1 x2 x3 Partition
1 0 0 0 [1], [2], [3]
2 1 1 0 [1, 2], [3]
3 1 0 1 [1, 3], [2]
4 0 1 1 [1], [2, 3]
5 1 1 1 [1, 2, 3]

Lemma 3.2: A (k + 1)-terminal universal interconnection
network U(k + 1) can be realized by connecting k switches
to the k-terminal universal interconnection network U(k), as
shown in Fig. 3.2.

(Proof) Assume that U(k) can realize any partition of k
elements.

We can append the (k+1)-th element to an arbitrary block
of a partition of k elements, by setting one of the switches to
the closed position as shown in Fig. 3.2. Also, by setting all

U(k)

x1 x2 x3 xk-1 xk

1 2 3 k-1 k

k+1

Fig. 3.2. Realization of a (k+1)-terminal Universal Interconnection Network

the switches to the open positions, we can make the (k + 1)-
th element isolated. In this way, all the partitions of k + 1
elements are realized. �

Theorem 3.1: An n-terminal universal interconnection net-
work U(n) can be realized with C1(n) =

n(n−1)
2 switches.

(Proof) We use mathematical induction on the number of
terminals n.

• When n = 2, U(2) can be realized with C1(2) = 1
switch.

• When n = 3, U(3) can be realized with C1(3) = 3
switches, by Lemma 3.1.

• Assume that a k-terminal universal interconnection net-
work U(k) can be realized with C1(k) = k(k−1)

2
switches. By Lemma 3.2, a (k + 1)-terminal universal
interconnection network U(k + 1) can be realized by
connecting k switches to U(k).

• Let C1(k + 1) be the sufficient number of switches to
realize U(k+1). Then, C1(k+1) satisfies the following
relation:

C1(k + 1) = C1(k) + k.

By solving this recurrence relation, we have

C1(k + 1) =
(k + 1)k

2
.

• Hence, we have the theorem.
�

Lemma 3.3: A five-terminal universal interconnection net-
work U(5) can be realized with nine switches.

(Proof) Consider the network shown in Fig. 3.3. Let us
introduce ternary signals Xi (i = 1, 2, 3, 4, 5) that control
the connections among terminals. Also consider the three-
position switch [8] shown in Fig. 3.4. This switch works as
follows: When Xi = 0, the common armature is connected
to the upper contact a; when Xi = 1, the common armature
is connected to the middle contact b; and when Xi = 2, the
common armature is connected to the lower contact network
c.
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Fig. 3.3. Five-terminal Universal Interconnection Network U(5)
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Fig. 3.4. Three-position Switch

In the network, each terminal i is connected to no bus line
when Xi = (0, 0); to L1 (the red bus line) when Xi = (0, 1);
and to L2 (the green bus line) when Xi = (1, 0).

By setting the values of Xi as shown in Table 3.2, we can
realize all 52 different partitions.

Note that the three-position switch for terminal 1 can be
replaced by a switch. Also, each of the three-position switches
for terminals 2 to 5 can be replaced by a pair of switches. In
Fig. 3.3, contacts a for three-position switches are isolated, so
no switch is necessary for the contacts a. Thus, the circuit can
be implemented by nine switches. �

Note that when n = 5, Theorem 3.1 gives C1(5) = 10.
However, the realization shown in Fig. 3.3 requires only nine
switches, and thus requires fewer switches. Bus lines are used
to implement blocks with more than two elements, such as
[1,2] and [3,4,5]. With this, when n ≥ 5, the upper bound of
Theorem 3.1 can be reduced by one.

Theorem 3.2: An n-terminal universal interconnection net-
work U(n) can be realized with C2(n) =

(n+1)(n−2)
2 switches

when n ≥ 5.
(Proof)
• We use mathematical induction on the number of termi-

nals n.
• When n = 5, U(5) can be realized with C2(5) = 9

switches by Lemma 3.3.
• Similarly to the proof of Theorem 3.1, by solving the

recurrence relation C2(k+1) = C2(k)+k and C2(5) = 9,
we have C2(k + 1) = (k+2)(k−1)

2 .
�

TABLE 3.2
COMBINATION TABLE FOR U(5)

Class X1 X2 X3 X4 X5 Partition
1 0 0 0 0 0 [1], [2], [3], [4], [5]
2 1 1 0 0 0 [1, 2], [3], [4], [5]
3 1 0 1 0 0 [1, 3], [2], [4], [5]
4 1 0 0 1 0 [1, 4], [2], [3], [5]
5 1 0 0 0 1 [1, 5], [2], [3], [4]
6 0 1 1 0 0 [2, 3], [1], [4], [5]
7 0 1 0 1 0 [2, 4], [1], [3], [5]
8 0 1 0 0 1 [2, 5], [1], [3], [4]
9 0 0 1 1 0 [3, 4], [1], [2], [5]
10 0 0 1 0 1 [3, 5], [1], [2], [4]
11 0 0 0 1 1 [4, 5], [1], [2], [3]
12 1 1 2 2 0 [1, 2], [3, 4], [5]
13 1 1 2 0 2 [1, 2], [3, 5], [4]
14 1 1 0 2 2 [1, 2], [4, 5], [3]
15 1 2 1 2 0 [1, 3], [2, 4], [5]
16 1 2 1 0 2 [1, 3], [2, 5], [4]
17 1 0 1 2 2 [1, 3], [4, 5], [2]
18 1 2 2 1 0 [1, 4], [2, 3], [5]
19 1 2 0 1 2 [1, 4], [2, 5], [3]
20 1 0 2 1 2 [1, 4], [3, 5], [2]
21 1 2 2 0 1 [1, 5], [2, 3], [4]
22 1 2 0 2 1 [1, 5], [2, 4], [3]
23 1 0 2 2 1 [1, 5], [3, 4], [2]
24 0 1 1 2 2 [2, 3], [4, 5], [1]
25 0 1 2 1 2 [2, 4], [3, 5], [1]
26 0 1 2 2 1 [2, 5], [3, 4], [1]
27 0 1 2 1 2 [3, 5], [2, 4], [1]
28 0 1 1 2 2 [4, 5], [2, 3], [1]
29 1 1 1 2 2 [1, 2, 3], [4, 5]
30 1 1 2 1 1 [1, 2, 4], [3, 5]
31 1 1 2 2 1 [1, 2, 5], [3, 4]
32 1 2 1 1 2 [1, 3, 4], [2, 5]
33 1 2 1 2 1 [1, 3, 5], [2, 4]
34 1 2 2 1 1 [1, 4, 5], [2, 3]
35 1 2 2 2 1 [2, 3, 4], [1, 5]
36 1 2 2 1 2 [2, 3, 5], [1, 4]
37 1 1 2 2 2 [3, 4, 5], [1, 2]
38 1 1 1 0 0 [1, 2, 3], [4], [5]
39 1 1 0 1 0 [1, 2, 4], [3], [5]
40 1 1 0 0 1 [1, 2, 5], [3], [4]
41 1 0 1 1 0 [1, 3, 4], [2], [5]
42 1 0 1 0 1 [1, 3, 5], [2], [4]
43 1 0 0 1 1 [1, 4, 5], [2], [3]
44 0 1 1 1 0 [2, 3, 4], [1], [5]
45 0 1 1 0 1 [2, 3, 5], [1], [4]
46 0 0 1 1 1 [3, 4, 5], [1], [2]
47 1 1 1 1 0 [1, 2, 3, 4], [5]
48 1 1 1 0 1 [1, 2, 3, 5], [4]
49 1 1 0 1 1 [1, 2, 4, 5], [3]
50 1 0 1 1 1 [1, 3, 4, 5], [2]
51 0 1 1 1 1 [2, 3, 4, 5], [1]
52 1 1 1 1 1 [1, 2, 3, 4, 5]

B. Lower Bound on the Number of Switches

Lemma 3.4: To realize U(n), at least �log2 B(n)� switches
are necessary, where B(n) denotes the Bell number.

As for Bell numbers, the following result is known [3].
Lemma 3.5: For every ε > 0, there exists an integer n0 =

n0(ε) such that for all n > n0,( n

e lnn

)n

< B(n).

From this, we have the following:
Theorem 3.3: To realize U(n), at least

O(n log n− n log log n)

switches are necessary.

IV. REALIZATION USING MULTI-POSITION SWITCHES

In the previous section, three-position switches were used
to realize a universal interconnection network U(5). In this
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TABLE 4.1
PARTITION NUMBERS P (n)

n P (n)
2 2
3 3
4 5
5 7
6 11
7 15
8 22

section, we show a method to realize a large-scale network
with multi-position switches and bus lines.

Lemma 4.1: A six-terminal universal interconnection net-
work U(6), can be realized with six four-position switches.

(Proof) We show that Fig. 4.1 realizes an arbitrary partition
of six elements. In the upper part of this figure, six four-
position switches are used. The operation of a four-position
switch shown in Fig. 4.2 is as follows: When X = 0, the
common armature is connected to the contact a; when X = 1,
the common armature is connected to the contact b; when
X = 2, the common armature is connected to the contact c;
and when X = 3, the common armature is connected to the
contact d.

The number of partitions of distinct n = 6 elements is
B(6) = 203. Note that the set of partitions has a symmetric
property, That is, a partition is realized by a network, then the
partition that is obtained by any permutation of the variables,
is also realized by the same network.

For example, suppose that Fig. 4.1 realizes the partition

{[1, 2], [3, 4], [5, 6]},
then the partition

{[1, 6], [2, 5], [3, 4]},
is also realized by the same network, when x1, x6, x2, x5,
x3 and x4 are connected to the terminals 1, 2, 3, 4, 5 and 6,
respectively.

Thus, the number of partitions to consider is reduced to the
number of partitions of eight indistinguishable elements.

In general, the number of partitions of n indistinguishable
elements is called the partition number1, and is denoted by
P (n) [2]. Table 4.1 shows P (n) for up to n = 8.

To prove the lemma, it is sufficient to show that all P (6) =
11 partitions shown in the second column of Table 4.2 are
realized.

As shown in the last six columns of Table 4.2, by setting
the values to the variables Xi (i = 1, 2, . . . , 6), we can realize
all 11 partitions. Here, when the value of variable Xi is j > 0,
the terminal i is connected to the bus line Lj . While, when the
value of the variable Xi is equal to 0, the terminal is isolated.
Note that Fig. 4.1 shows the state where all the variables Xi

are zeros. From these, we have the lemma. �

In Fig.4.1, replace each four-positional switch with the
circuit in Fig. 4.3, and we have U(6) with 6 × 3 = 18

1Ferrers diagram or Young diagrams can be used to derive this number.

1

2

3

4

5

6

L2
L3

L1

a

a

a

a

a

a

Fig. 4.1. Six-terminal Universal Interconnection Network U(6)

switches. In Fig. 4.1, contacts a are isolated. Thus, no switch
is necessary for the contacts a.

a b c d

Fig. 4.2. Four-position Switch

b c d

Fig. 4.3. Realization of a Four-position Switch

Lemma 4.2: When n = 2m and m ≥ 3, an n-terminal
universal interconnection network U(n) can be realized with
n (m+ 1)-position switches.

(Proof) Consider the network which is a generalized version
of U(6) in Fig. 4.1. Assume that the number of terminals is
n = 2m, the number of bus lines is m, and in each column,
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there is a (m+1)-position switch. In this case, the generalized
network realizes an arbitrary partition. �

Theorem 4.1: When n = 2m and n ≥ 6, an n-terminal
universal interconnection network U(n) can be realized with

C3(n) =
m

2
(3m+ 1) =

n

8
(3n+ 2)

switches.
(Proof) First, realize an n-terminal universal interconnection

network U(n) using n (m+ 1)-position switches, by Lemma
4.2. Then, replace each (m + 1)-position switch with m
switches. In this case, the total number of switches is

2m×m = 2m2.

However, we can remove redundant switches. In Fig. 4.1,
we can remove the three contacts with black circles. This can
be done using the strategy: A terminal with the smaller index
uses the bus line with the smaller index.

So, the terminal 1 can be connected to only the bus line
L1. Also, the terminal 2 can be connected to the bus line L1
or L2. With this method, we can remove

(m− 1) + (m− 2) + · · ·+ 2 + 1 =
m(m− 1)

2

switches. Thus, the total number of switches is

2m2 − m(m− 1)

2
=

m

2
(3m+ 1).

�

Note that when n = 6, C1(6) = C3(6) = 15, and C2(6) =
14. However, when n = 8, C1(8) = 28, C2(8) = 27, and
C3(8) = 26 2.

Similarly, we have the following result.
Theorem 4.2: When n = 2m+ 1 and n ≥ 5, an n-terminal

universal interconnection network U(n) can be realized with

C3(n) =
3

2
m(m+ 1) =

3

8
(n2 − 1)

switches.
A design method for U(n) is summarized as:

Algorithm 4.1:
1) Make a combination table for U(n) such as Table 3.1

and Table 3.2.
2) Prepare �n2 � bus lines.
3) Prepare n �n2 �-position switches.
4) Connect the terminals and bus lines according to the

combination table.
5) Replace the multi-position switches with simple

switches.
6) Remove redundant switches.
Definition 4.1: Let C(n) be the minimum number of

switches to realize an n terminal universal interconnection
network U(n).

From Lemmas 3.1 and 3.3, and Theorems 3.1, 3.2, 4.1, and
4.2, we have the following:

2C1 denotes the upper bound derived from Theorem 3.1, C2 denotes the
upper bound derived from Theorem 3.2, and C3 denotes the upper bound
derived from Theorems 4.1 and 4.2.

TABLE 4.2
REALIZATION OF U(6) USING FOUR-POSITION SWITCHES

Class Partition X1 X2 X3 X4 X5 X6

1 [1], [2], [3], [4], [5], [6] 0 0 0 0 0 0
2 [1, 2], [3], [4], [5], [6] 1 1 0 0 0 0
3 [1, 2, 3], [4], [5], [6] 1 1 1 0 0 0
4 [1, 2], [3, 4], [5], [6] 1 1 2 2 0 0
5 [1, 2, 3, 4], [5], [6] 1 1 1 1 0 0
6 [1, 2, 3], [4, 5], [6] 1 1 1 2 2 0
7 [1, 2], [3, 4], [5, 6] 1 1 2 2 3 3
8 [1, 2, 3, 4, 5], [6] 1 1 1 1 1 0
9 [1, 2, 3, 4], [5, 6] 1 1 1 1 2 2
10 [1, 2, 3], [4, 5, 6] 1 1 1 2 2 2
11 [1, 2, 3, 4, 5, 6] 1 1 1 1 1 1

Corollary 4.1:

C(2) = 1,

C(3) = 3,

C(4) ≤ 6,

C(5) ≤ 9,

C(6) ≤ 14,

C(n) ≤ 3

8
(n2 − 1), (n = 2m+ 1, n ≥ 5)

C(n) ≤ n

8
(3n+ 2), (n = 2m,n ≥ 6)

V. CONCLUDING REMARKS

In this paper, we showed a method to realize an n-terminal
universal interconnection network using n

8 (3n + 2) contact
switches, when n = 2m ≥ 6, and 3

8 (n
2− 1) contact switches,

when n = 2m+ 1 ≥ 5.
These switches can be controlled by multi-valued signals

Xi (i = 1, 2, . . . , n), shown, for example, in Tables 3.2 and
4.2. The design of such a circuit is a future problem.

The problem that appeared in the introduction can be solved
by Theorem 4.2. We can use at most C3(7) = 18 switches.
In many cases, only a proper subset of B(7) = 877 different
connections is used. Thus, the number of necessary switches
can be less than 18. Given the necessary connection patterns,
the minimization of switches is a future problem.

VI. RELATED WORK

Pioneering work on two-terminal contact networks was
started by Nakashima [14] and Shannon [17].

The upper and lower bounds on the number of switches to
realize an arbitrary logic function were derived by Shannon
[18].

Minimization on the number of switches to realize a given
logic function using a series-parallel network was considered
by Lawler [12].

As for n-terminal interconnection networks, Harrison [10]
showed a method to analyze the transmission functions using
transitive closure of the connection matrix.

Consider the case with two groups of n terminals, where
one terminal in a group is connected to exactly one terminal
in the other group. Since such networks are frequently used
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in telephone exchange networks, many papers have been
published [6], including non-blocking minimal spanning
switch [7].

A realization of transmission function using a lattice of four-
terminal switches was considered in [1].

As for hardware that generates all possible partitions, Butler
and Sasao [5] showed an FPGA realization. This circuit gener-
ates all partitions (for example, the last column of Table 3.2),
but is not an interconnection network.

As for three-terminal networks, Koga [11] showed various
logic circuits, but they are unidirectional networks.

A universal logic module realizes an arbitrary n-variable
logic function. It can be implemented by a logic network with
m � O(2n/ log n) inputs. Since it is quite important, many
papers have been published [19].

However, within the authors knowledge, no paper on uni-
versal interconnection network has been published.
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