
Handwritten Digit Recognition Based on
Classification Functions

Tsutomu Sasao Yuto Horikawa Yukihiro Iguchi
Meiji University, Kanagawa, Japan

Abstract—As a model of a machine learning, an incompletely
specified classification function is used. As a benchmark problem,
data for handwritten digits with 28 × 28 images were used.
This data was converted into one with 14 × 14 = 196 pixels
using a space filter. Also, the value of each pixel was binarized.
With this operation, the original data was converted into a 196-
variable classification function that takes values from 0 to 9.
For the training data, we had k = 58191 samples. Using a
linear transformation, the 196-variable classification function was
converted into a 25-variable function. We applied the testing data
consisting of 9569 samples. The reduced classification function
produced correct answers for 97.3% of the recognized test
data. For unrecognized test data, the circuit for the reduced
classification function produced ”unrecognized” signals. The
recognition circuit for handwritten digits can be implemented by
a simple architecture: a cascade of a linear circuit and a memory.
To increase the recognition rate, we also present methods using
multiple classification functions and voters.

Index Terms—linear decomposition, partially defined function,
support minimization, classification, digit recognition, Occam’s
razor, index generation function, machine learning.

I. INTRODUCTION

Given disjoint sets of elements, the problem to find a simple
rule to distinguish these sets, is a major topic of machine
learning and data mining. A partially defined classification
function [12] is the mapping:

f : D → {1, 2, . . . ,m},
where D ⊂ {0, 1}n represents the training set. When the
number of elements in the training set |D| is sufficiently
smaller than the total number of input combinations 2n,
the original function f can be represented with compound
variables yj as follows:

f(x1, x2, . . . , xn) = g(y1, y2. . . . yp), (1.1)

where g is a reduced classification function of p variables,
yj (j = 1, 2, . . . , p) are linear functions of the input variable
x1, x2, . . . , xn:

yj = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn,

where ai ∈ {0, 1}, and p < n.
Interestingly, the reduced classification function g produces

correct responses not only for the training set, but also for
much of unknown test set.

That is, the reduced classification function g has a gener-
alization ability [2]. The recognition rate of the digits based
on reduced classification functions is lower than that of neural
networks. However, this method requires no complex learning,

TABLE 2.1
REGISTERED VECTOR TABLE

x1 x2 x3 x4 x5 x6 f
1 1 0 0 1 1 1
0 1 1 0 1 1 1
0 0 0 0 1 0 1
1 1 0 1 1 1 2
1 0 0 0 1 1 2
0 1 0 1 0 0 2

and can be implemented by a cascade of a linear circuit and
a memory. So, a simple digit recognition is possible.

The reduced classification function correctly recognizes the
training set. And for the test set, the function may incorrectly
recognize some of input vectors. However, for the real data
such as handwritten digits, we demonstrate that the reduced
classification function correctly recognizes much part of the
test set. The rest of this paper is organized as follows: Section
II introduces classification functions; Section III describes
compound variables and their reduction method; Section IV
explains the benchmark functions; Section V shows the single
unit realization; Section VI shows the 10-unit realization;
Section VII shows the 45-unit realization; and Section VIII
concludes the paper.

II. DEFINITIONS

Definition 2.1: Consider the set of k distinct vectors of n
bits. These vectors are registered vectors. In the framework
of machine learning, the set of registered vectors corresponds
to the training set. To each registered vector, assign an integer
between 1 and m, where 2 ≤ m ≤ k. The registered
vector table shows the corresponding function values for the
registered vectors. A partially defined classification function
produces the corresponding function values for the input
vectors that match the registered vectors. When the input
vector does not match a registered vector, the function value is
undefined. A partially defined classification function represents
a mapping f : D → {1, 2, . . . ,m}, where D ⊂ Bn is the set
of registered vectors, and B = {0, 1}. k is the weight of the
function. When m = k, the function f is an index generation
function [8], and when m = 2, the function f is a decision
function [10].

Example 2.1: Table 2.1 is the registered vector table of the
decision function with weight k = 6.

III. COMPOUND VARIABLES AND THEIR REDUCTION

Partially defined functions often can be represented with
fewer variables by using linear decompositions [11]. In the

124

2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL)

978-1-7281-5406-0/20/$31.00 ©2020 IEEE
DOI 10.1109/ISMVL49045.2020.00-18

X

Linear
Function

General
Function

n p

Cost: O(np) Cost: O(q2p)

� �

�

Fig. 3.1. Linear Decomposition

linear decomposition shown in Fig. 3.1, L denotes a linear
function, while G denotes a general function (in most cases,
non-linear function). We assume the cost of the linear part is
O(np), while the cost of the general part is O(q2p).

Definition 3.1: Compound variables have the form y =
c1x1⊕ c2x2⊕ · · · ⊕ cnxn, where ci ∈ {0, 1}. The compound
degree of the variable y is

∑n
i=1 ci, where

∑
denotes an

ordinary integer addition, and ci is an integer. Primitive
variables are variables with compound degree 1.

Definition 3.2: Given an incompletely specified function f ,
the linear transformation that minimizes the number of the
compound variables is an optimal transformation.

When the number of compound variables can be reduced
to q = �log2 m� by a linear transformation, then the transfor-
mation is optimum.

Example 3.1: The function shown in Table 2.1, can be
represented as follows:

When primitive variables are used, the function can be
represented with only three variables:

f = (x2x̄4 ∨ x̄1x̄4) ∨ 2(x2x4 ∨ x1x̄2x̄4)

or
f = (x̄2x̄4x̄6 ∨ x2x̄4x6) ∨ 2(x2x4 ∨ x̄2x̄4x6),

where ∨ denotes the max operation.
When the compound variables y1 = x4 and y2 = x2⊕x6 are

used, the function can be represented with only two variables:

f = ȳ1ȳ2 ∨ 2(y1 ∨ y2).

The reduction methods of variables are shown in [12].

IV. BENCHMARK FUNCTIONS AND THEIR EVALUATION

We use training sets of handwritten digits to find classi-
fication functions, and realize them by logic circuits. Since
the number of variables and registered vectors is very large,
we reduced the sizes of the problems. We considered two
problems: The first one consists of 8 × 8 images, and the
second one consists of 14× 14 images.

A. 8× 8 Images

We obtained the function from 32×32 bit maps as follows:
First, the maps were partitioned into disjoint blocks of 4×4

images, and the number of non-zero pixels in each block was
counted. From this, we had matrices of 8 × 8, where each

TABLE 4.1
NUMBER OF 8× 8 IMAGES.

Data # of samples
Training Set 3686
Test Set 1675

TABLE 4.2
NUMBER OF 14× 14 IMAGES.

Data # of samples
Training Set 58191
Test Set 9569

element has values in {0, 1, 2, . . . , 16} [14]. To further reduce
the size of the data, the matrices were binarized. We set the
threshold to 8, and the values of the matrices were converted
into {0, 1}.

In this way, we had a 64-variable 10-valued classification
function (n = 64, m = 10). With this operation, some data
in the training set and the test set became identical. So, we
removed duplicated data. Also, from the test set, we removed
data that also appeared in the training set. Table 4.1 shows the
sizes of the training set and the test set after this operation.

B. 14× 14 Images

The data in MNIST[15] consists of bit maps of 28 × 28
images, and the training set consist of 6×104 images, and the
test set consists of 104 images. We partitioned these images
into bit maps of 2×2 disjoint blocks, and counted the number
of non-zero pixels in each block. With this process, we had
a matrix of 14 × 14, where each element has a value in
{0, 1, 2, 3, 4}. To further compress the data, the matrix was
binarized. In this case, we used max pooling. That is, the
threshold was set to 1. In this way, we had a 196-variable 10-
valued classification function (n = 196, m = 10). Also in this
case, we removed duplicated data. Table 4.2 shows the size
of the training set and the test set, after removing duplicated
data.

C. Evaluation of Classifier

To evaluate the performance of classifier, we use three
parameters:

Definition 4.1:

Correctness rate =
of correctly recongized images

Total # of recognized images

Recognition rate =
Total # of recongized images

Total # of images

Accuracy =
of correctly recongized images

Total # of images

Note that the following relation holds among these param-
eters:

Accuracy = Correctness rate× Recognition rate.

In the case of neural nets, accuracy is used to evaluate their
performance, rather than the correctness rate or the recognition
rate.

125

�������
����	�

�����

��

0

1

2

3

4

5

6

7

8

9

Fig. 5.1. Single-Unit Realization

V. SINGLE-UNIT REALIZATION

A single-unit realization is implemented by a cascade of a
linear circuit and a memory, as shown in Fig. 5.1. When the
primitive variables are used, the linear part can be omitted.
Thus, it can be implemented by a single memory.

A. 8× 8 Images

The number of primitive variables for this function was
reduced to p = 21 by Algorithm 3.1 in [12].

Then, the number of compound variables for this function
was reduced to p = 17, by the iterative algorithm using
Lemma 5.1 in [12].

The reduced classification function g correctly recognized
all the training data. Next, we applied the test data shown
in Table 4.1 to the reduced classification function g, and
checked if g recognized the test data correctly or not. Table 5.1
shows the results. When the digits were unrecognized, the
classification function g produced the unrecognized output.

TABLE 5.1
RECOGNITION RESULTS FOR SINGLE-UNIT REALIZATION (8× 8 IMAGES).

Result Primitive Compound
variables variables
p = 21 p = 17

Correctly recognized 417 437
Incorrectly recognized 11 32
Unrecognized 1247 1206
Total 1675 1675

Table 5.1 shows that, the recognition rate and accuracy of
the reduced classification function g are much lower than that
of the neural networks [14], [15], but the function g can be
implemented by a cascade of a linear circuit and a memory.
Also, no learning is necessary.

B. 14× 14 Images

The number of primitive variable was reduced to p = 44,
by Algorithm 3.1 in [12]. Then, the number of compound
variables was reduced to p = 25, by the iterative algorithm
using Lemma 5.1 in [12]. The average and the maximum
compound degrees were 3.80 and 12, respectively. Table 5.2
shows the recognition results. When compound variables were
used, the correctness rate was 0.973. However, the recognition
rate and accuracy are very low.

TABLE 5.2
RECOGNITION RESULT FOR SINGLE-UNIT REALIZATION (14× 14

IMAGES).

Result Primitive Compound
variables variables
p = 44 p = 25

Correctly recognized 873 1064
Incorrectly recognized 3 29
Unrecognized 8693 8476
Total 9569 9569

������

 �0

0

1

� 2

8

9

�9

�8

 �2

�1
��	�
��������

Fig. 6.1. 10-Unit Realization

VI. 10-UNIT REALIZATION

In the previous section, the function was implemented by
a single unit: a cascade of a linear circuit and a memory.
Although the correctness rate was high, the recognition rate
and accuracy were low.

Another problem in the single-unit realization is the compu-
tation time to reduce the number of compound variables. To
reduce the number of variables, the minimization algorithm
uses the set of difference vectors, whose size depends on k
and m.

The recognition problem of digits is to classify 58191
images into m = 10 categories. The circuit shown in Fig. 5.1
solves this problem by a single unit. When the output values
are all 0’s, the image is unrecognized.

The 10-unit realization uses a separate unit to recognize
each of 10 digits, as shown in Fig. 6.1. The top unit decides
if the input image is 0 or not; the second unit decides if the
input image is 1 or not; . . . , ; and the bottom unit decides if
the input image is 9 or not.

Tables 6.1 and 6.2 show the numbers of correctly and
incorrectly recognized test images. When s units recognized
the image and one of them produced a correct responses, the
number of correct answers was counted as 1

s , and the number
of incorrect answers was counted as 1− 1

s . These tables show
that, with multiple units, the recognition rate increases.

TABLE 6.1
RECOGNITION RESULTS FOR THE 10-UNIT REALIZATION (8× 8 IMAGE).

Result Primitive Compound
variables variables

Correctly recognized 907.5 929
Incorrectly recognized 42.5 63
Unrecognized 725.0 683
Total 1675.0 1675

126

TABLE 6.2
RECOGNITION RESULTS FOR THE 10-UNIT REALIZATION (14× 14 IMAGE).

Result Primitive Compound
variables variables

Correctly recognized 1779 2147
Incorrectly recognized 17 84
Unrecognized 7773 7338
Total 9569 9569

Table 6.3 shows the recognition result of 8× 8 images for
each digit. The columnn headed with pi denotes the number
of variables to recognize digit i. Other columns show the
number of images with correct responses; the number of
images with incorrect responses; and the number of images
with unrecognized responses.

Table 6.4 shows the reconition result of 14× 14 images.
The recognition rate is higher when compound variables are

used. However, the correctness rate is higher when primitive
variables are used.

Also, the recognition rates are different for different digits.
Especially for 8 × 8 images, the recognition rate and the
correctness rate are high for the digit “0”.

VII. 45-UNIT REALIZATION

In the previous section, the i-th unit decides if the input
image is i or not. With 10 such units, the recognition rate
was improved. In this section, each unit decides if the input
image represents i or j or another number. By using

(
10
2

)
=

45 such units, we can further improve the recognition rate.
Fig. 7.1 shows the 45-unit realization. Each unit has two

���

���

���

����

���

�

���

���

����

���

��

� �

���

����

���

�

�

Fig. 7.1. 45-unit realization.

outputs: The output (1, 0) denotes that the input image is i;
the output (0, 1) denotes that the input image is j; and the
output (0, 0) denotes that the input image is another number
or unknown. Since there are 45 units, the total number of
outputs is 90. In addition, we use 10 threshold elements (or
voters). The i-th threshold element has 9 inputs with label i,
and produces one if and only if the number of active inputs is

Fig. 7.2. Correctness rate and Recognition rate vs. threshold t, (45 units,
primitive variables: 8× 8 image.)

equal to or greater than t. By appropriately selecting the value
of the threshold t, we can improve the recognition rate and/or
correctness rate.

Fig. 7.2 shows correctness rate and recognition rate for
different values of threshold t. This data is for 8 × 8 images
and only primitive variables are used to recognize the data.
With the increase of threshold t, the correctness rate increases,
while the recognition rate decreases. When t = 7 and t = 8,
both the recognition rate and correctness rate are more than
0.8.

In many cases, the accuracy takes its maximum when the
threshold is set so that the correctness rate is equal to the
recognition rate. For example, Fig. 7.2 shows that the accuracy
takes its maximum when t = 7 or t = 8. The accuracy of 45
units are summarized in Table 7.2.

Table 7.1 and Table 7.3 show recognition results for four
different implementations. In all cases, by selecting appropri-
ate thresholds, we could improve the accuracy.

Table 7.4 and Table 7.5 show average number of variables
and its standard deviations. Note that the number of variables
is smaller than those of the 10-unit realizations. Thus, the
amount of memory for each unit is also smaller.

The total amount of memory to implement the 45-unit
realization is

8∑

i=0

9∑

j=i+2

�log2(2 + 1)�2pij ,

where pij denotes the number of the variables for the unit
(i, j).

Table 7.6 compares the memory sizes of circuits for 8× 8
images, while Table 7.7 compares the memory sizes of circuits
for 16 × 16 images. The memory sizes for 9-input voting
functions are not included. Note that an 9-input voting function
can be implemented by two 6-input LUTs.

These tables show that the 45-unit realization requires less
hardware, with higher accuracy.

127

TABLE 6.3
RECOGNITION RESULTS FOR THE 10-UNIT REALIZATION (8× 8 IMAGE).

Primitive variables Compound variables
Digit pi Correctly Incorrectly Unrecognized pi Correctly Incorrectly Unrecognized

recognized recognized recognized recognized
0 11 130 2.0 13 11 129.0 4.0 12
1 17 55.5 5.5 75 14 59.5 7.5 69
2 13 114 4.0 56 12 115.5 5.5 53
3 16 83 4.0 91 14 84.0 5.0 89
4 16 98 5.0 71 13 101.0 6.0 67
5 15 109 4.0 62 14 110.0 7.0 58
6 14 120 3.0 42 12 127.5 3.5 34
7 13 118 1.0 59 12 116.0 3.0 59
8 18 24 7.0 141 15 27.0 12.0 133
9 18 56 7.0 115 14 59.5 9.5 109

Total 907.5 42.5 725 929.0 63.0 683

TABLE 6.4
RECOGNITION RESULTS FOR THE 10-UNIT REALIZATION (14× 14 IMAGE).

Primitive Variables Compuond Variables
Digit pi Correctly Incorrectly Unrecognized pi Correctly Incorrectly Unrecognized

recognized recognized recognized recognized
0 29 317.0 3.0 660 21 415.5 5.5 559
1 37 389.5 0.5 320 21 443.0 2.0 265
2 30 127.0 1.0 904 22 136.0 13.0 883
3 33 42.0 1.0 967 22 65.0 8.0 937
4 34 135.5 2.5 844 22 159.0 9.0 814
5 31 66.0 1.0 825 22 87.0 13.0 792
6 30 382.0 3.0 572 21 398.5 5.5 553
7 34 206.0 4.0 817 22 284.5 10.5 732
8 37 17.0 0.0 957 22 41.0 6.0 927
9 36 97.0 1.0 907 23 117.5 11.5 876

Total 1779.0 17.0 7773 2147.0 84.0 7338

TABLE 7.1
RECOGNITION RESULT FOR 45-UNIT REALIZATION (8× 8 IMAGE).

Result Primitive Compound
variables variables
t = 8 t = 8

Correctly recognized 1295.50 1324.0
Incorrectly recognitized 83.50 106.0
Unrecognized 300.00 245.0
Total 1675.00 1675.0

TABLE 7.2
ACCURACY OF 45-UNIT REALIZATIONS.

Image Primitive Compound
variables variables

8× 8 0.771 0.790
t = 8 t = 8

14× 14 0.700 0.720
t = 3 t = 4

TABLE 7.3
RECOGNITION RESULT FOR 45-UNIT REALIZATION (14× 14 IMAGES).

Result Primitive Compound
variables variables
t = 3 t = 4

Correctly recognized 6700.95 6889.12
Incorrectly recognized 1551.05 1247.88
Unrecognized 1317.00 1432.00
Total 9569.0 9569.00

TABLE 7.4
NUMBER OF VARIABLES FOR 45-UNIT REALIZATION (8× 8 IMAGES).

Primitive Compound
variables variables

Average 7.51 7.00
Standard Deviation 2.15 1.74

TABLE 7.5
NUMBER OF VARIABLES FOR 45-UNIT REALIZATION (14× 14 IMAGES).

Primitive Compound
variables variables

Average 20.98 16.33
Standard Deviation 3.30 1.51

TABLE 7.6
MEMORY SIZES OF CIRCUITS FOR 45-UNIT REALIZATION (8× 8 IMAGES,

MEGA BITS).

8× 8 Single Unit 10 Units 45 Units
Pririmive Variables 8.4 0.9 0.07
Compound Variables 0.5 0.1 0.02

TABLE 7.7
MEMORY SIZES OF CIRCUITS FOR 45-UNIT REALIZATION (14× 14

IMAGES, MEGA BITS).

14× 14 Single-Unit 10-Unit 45-Unit
Pririmive Variables 70, 368, 744.2 391, 378.9 3, 788.8
Compound Variables 134.2 39.8 11.8

128

VIII. CONCLUDING REMARKS

In this paper, we showed that classification functions are
useful for recognition of handwritten digits.

The reduced classification function g recognized correctly
not only for all the training data, but also for much of the test
data. The reason why the reduced classification functions g
have the generalization capability, can be explained as follows:
During the minimization of variables, necessary variables to
recognize the digits are selected. This process corresponds to
the feature extraction of digits in the training data.

In the framework of probably approximate correct learning
[16], Occam’s razor is known. Occam’s razor recommends
using as simple rules as possible [1]. With this strategy, we
can expect that the fewer the variables to distinguish digits, the
higher the accuracy for the test data. Also, when the number
of the variables are the same, we can expect that the smaller
the compound degree, the higher the accuracy.

First, the number of primitive variables was reduced, and
the second, the number of compound variables was reduced.
When the values of k and m are large, the computation time
and necessary amount of memory increased rapidly.

To reduce the values of k and m, a separate unit was used
to recognize each digit. In the 10-unit realization, the decision
function for each unit became simpler, and the accuracy
increased considerably. Also, we found that the recognition
rates are different for different digits. We also showed the 45-
unit realization. Although it is more complicated, the accuracy
was improved by selecting an appropriate threshold.

Accuracy of the circuits derived from classification
function is lower than that of neural networks. However,
the amount of necessary hardware is much smaller. Also,
no learning is necessary. In the case of 8× 8 images, just a
single memory with 17 inputs, and a small amount of hardware
for the linear circuit are sufficient.

One of the reviewer pointed out that when s units recognize
the image, the system cannot find the correct answer. So, in
such a case, it should be considered as unrecognized. This
problem can be solved by using extra hardware to choose the
answer randomly. In such a case, the correctness rate will be 1

s .
To implement it by a combinational circuit, a priority encoder
would be a simpler and realistic.

Most neural nets for MNIST use soft max functions in the
output layer. Note that each of outputs denotes the probability
(possibility) pi, where

∑9
i=0 pi = 1.0. For example, if the

probabilities for the digits “0” and “1” are both 0.5, and
probabilities for other digits are 0.0, then the correctness rate
is computed as 0.5. Also in the case of neural nets, the circuit
to find the output with the largest probability is not included.

As for the generalization ability for logic circuits, [5] and
[2] also consider it. However, [5] used random logic circuits,
while [2] used multi-level LUT networks. Thus, they are more
complicated.

ACKNOWLEDGMENTS

This research is partly supported by the grant of the Japan
Society for the Promotion of Science (JSPS), Grant in Aid

for Scientific Research. Dr. Alan Mishchenko of University
California, Berkeley, and Dr. Satrajit Chatterjee of Google
AI gave us useful comments. Reviewers comments were also
useful. Prof. Jon T. Butler improved English presentation.

REFERENCES

[1] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
“Occam’s razor,” Information Processing Letters, Vol. 24, Issue
6, 1987, pp. 377-380.

[2] S. Chatterjee,“Learning and memorization,” International Con-
ference on Machine Learning (ICML 2018), Stockholm, Swe-
den, July 10-15, 2018, pp. 754-762.

[3] T. Ibaraki,“Partially defined Boolean functions,” Chapter 8 in:
Y. Crama and P. L. Hammer, Boolean Functions - Theory,
Algorithms and Applications, Cambridge University Press, New
York, 2011.

[4] J. Kuntzmann, Algèbre de Boole, Dunod, Paris, 1965. English
translation: Fundamental Boolean Algebra, Blackie and Son
Limited, London and Glasgow, 1967.

[5] A. L. Oliveira and A. Sangiovanni-Vincentelli, “Learning com-
plex boolean functions:Algorithms and applications,” Advances
in Neural Information Processing Systems, No. 6, pp. 911-918.
Morgan-Kaufmann, 1994.

[6] T. Sasao, “On the number of variables to represent sparse logic
functions,” ICCAD-2008, San Jose, California, USA, Nov. 10-
13, 2008, pp. 45-51.

[7] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Aca-
demic Publishers, 1999.

[8] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.
[9] T. Sasao, “Index generation functions: Tutorial,” Journal of

Multiple-Valued Logic and Soft Computing, Vol. 23, No. 3-4,
pp. 235-263, 2014.

[10] T. Sasao, “On a minimization of variables to represent sparse
multi-valued input decision functions,” International Sympo-
sium on Multiple-Valued Logic, (ISMVL-2019), Fredericton,
Canada, May 21-23, 2019, pp. 182-187.

[11] T. Sasao, Index Generation Functions, Morgan & Claypool,
Oct. 2019.

[12] T. Sasao, “On the minimization of variables to represent
partially defined classification functions,” International Sym-
posium on Multiple-Valued Logic, (ISMVL-2020), May 20-22,
Miyazaki, Japan.

[13] D. A. Simovici, M. Zimand, and D. Pletea,“Several remarks
on index generation functions,”International Symposium on
Multiple-Valued Logic (ISMVL-2012), Victoria, Canada, May
2012, pp. 179-184.

[14] https://archive.ics.uci.edu/ml/datasets
/optical+recognition+of+handwritten+digits

[15] http://yann.lecun.com/exdb/mnist/
[16] L. G. Valiant,“A theory of learnable,” Communications of the

ACM, Vol. 27, No. 11,pp. 1134-1142, 1984,

129

