
On Optimum Linear Decomposition of Symmetric Index Generation Functions

Shinobu Nagayama∗ Tsutomu Sasao† Jon T. Butler‡

∗Dept. of Computer and Network Eng., Hiroshima City University, Hiroshima, JAPAN
†Dept. of Computer Science, Meiji University, Kawasaki, JAPAN

‡Dept. of Electr. and Comp. Eng., Naval Postgraduate School, Monterey, CA USA

Abstract—This paper shows study results on linear decom-
position of symmetric index generation functions. We analyze
properties of symmetric index generation functions, and derive
a theorem on the number of 1’s in a compound variable
for linear decomposition. The paper presents an algorithm
using the theorem to exactly minimize the number of linear
functions in linear decomposition. By taking advantage of the
theorem and the symmetry properties, the algorithm can find
an optimum linear decomposition quickly. Experimental results
using symmetric index generation functions show the efficiency
of the proposed algorithm.

Keywords-Symmetric index generation functions; functional
decomposition; linear decomposition; logic design; theoretical
analysis.

I. INTRODUCTION

Index searches are basic operations used in many applica-
tions, such as information lookup, computer virus detection,
and analysis of DNA. The operations can be modeled
as multiple-valued functions, called index generation func-
tions [11], [12]. Index generation functions f (x1,x2, . . . ,xn)
are efficiently realized by linear decomposition [2], [9],
as shown in Fig. 1, where L realizes linear functions yi

(i = 1,2, . . . , p), and G realizes a function storing indices
of an index generation function. The first part L produces
yi from inputs x1,x2, . . . ,xn of f , and the second part G
generates an index of f from yi.

A memory-based architecture [11] for linear decomposi-
tion of index generation functions has been proposed, and
shows much promise as a fast programmable circuit for the
above applications. In the memory-based architecture, L is
implemented by EXOR gates, registers, and multiplexers,
and G is implemented by a (2p× q)-bit memory. As the
number of linear functions p increases, the size of G

Linear functions Function storing
indices

q
L G

x

f

1

x2

xn

y1

y2

yp

Figure 1. Linear decomposition of index generation functions [14].

exponentially increases. Thus, minimization of p is required
in the architecture, and many minimization methods [1],
[4]–[8], [13], [14], [16]–[20] have been proposed thus far.
Among them, we focus on exact minimization methods [5]–
[8], [18], [19] because of academic interest as well as
practical requirements.

Most of the existing exact minimization methods have
no specific target class of functions. However, by targeting
only symmetric index generation functions, we can find
an optimum linear decomposition more efficiently [18].
A dedicated optimization algorithm for symmetric index
generation functions has been proposed in [7], and it is
shown that utilization of a symmetric property is effective to
reduce the solution search space. However, there is room for
improvement in the algorithm, since symmetric properties
have not been fully analyzed.

Thus, this paper begins with analyzing properties of sym-
metric index generation functions, and presents an optimiza-
tion algorithm using the properties for linear decomposition
of the functions. Since the presented algorithm is based on
dynamic programming [8] and uses zero-suppressed binary
decision diagrams (ZDDs) as well, the solution search space
is significantly reduced, resulting in fast solution search.

The rest of this paper is organized as follows: Section II
defines symmetric index generation functions, linear decom-
position, and ZDDs. In Section III, we analyze properties of
symmetric index generation functions, and derive a theorem
on the number of 1’s in a compound variable for lin-
ear decomposition. Section IV formulates the minimization
problem for the number of linear functions, and presents a
dynamic programming based algorithm using the symmetric
properties and ZDDs. Section V shows experimental results
using some symmetric index generation functions, and Sec-
tion VI concludes the paper.

II. PRELIMINARIES

A. Index Generation Functions and Linear Decomposition

This subsection shows definitions of symmetric index
generation functions [7], [11], [12], [18] and linear decom-
positions [2], [9], [14].

Definition 1: An incompletely specified index genera-
tion function, or simply index generation function, f (X)
is a multiple-valued function, where X is a set of n binary

130

2020 IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL)

978-1-7281-5406-0/20/$31.00 ©2020 IEEE
DOI 10.1109/ISMVL49045.2020.00-17

Table I
EXAMPLE OF SYMMETRIC INDEX GENERATION FUNCTION.

Registered vectors indices of
x1 x2 x3 x4 S4

1
0 0 0 1 1
0 0 1 0 2
0 1 0 0 3
1 0 0 0 4

variables (x1,x2, . . . ,xn), and k is the number of assignments
of values to the binary variables, where each assignment
maps to a member of K = {1,2, . . . ,k}. That is, the variables
of f are binary-valued, while f is k-valued. Further, there
is a one-to-one relationship between the k assignments of
values to x1,x2, . . . ,xn and K. Other assignments are left
unspecified. The k assignments of values to x1,x2, . . . ,xn are
called the registered vectors. K is called the set of indices.
k = |K| is called the weight of the index generation function
f .

Definition 2: A characteristic function χ of an index
generation function f (X) is a logic function: {0,1}n →
{0,1} defined as

χ(X) =
{

1 (f (X) ∈ K)
0 (Otherwise).

Definition 3: A symmetric logic function χ satisfies

χ(x1,x2, . . .xi, . . . ,x j, . . . ,xn) = χ(x1,x2, . . .x j, . . . ,xi, . . . ,xn)

for ∀xi,x j ∈ X . In this function, function values are decided
only by the number of 1’s in an assignment of values to
x1,x2, . . . ,xn. An elementary symmetric function Sn

m is a
special case of symmetric logic functions where Sn

m = 1
if and only if the number of 1’s in an assignment to
x1,x2, . . . ,xn is m [10].

Definition 4: Let χ(x1,x2, . . . ,xn) be a characteristic func-
tion of an index generation function f . When χ is symmetric,
f is a symmetric index generation function.

Note that “ f is a symmetric index generation function”
does not mean f is a symmetric function (where any
permutation of the input values leaves the function value
unchanged).

For simplicity, we consider only the case where χ is
an elementary symmetric function. Thus, in this paper,
symmetric index generation function Sn

m means that its χ is
an elementary symmetric function Sn

m. A symmetric index
generation function Sn

m has

k =
(

n
m

)

registered vectors (i.e., indices).
Example 1: Table I shows an example of 4-variable sym-

metric index generation function S4
1 with weight four. Note

that, in this function, input values other than 0001, 0010,
0100, and 1000 are NOT assigned to any function values.

Table II
FUNCTION g STORING INDICES IN LINEAR DECOMPOSITION OF S4

1 .

y1 y2 g
0 0 1
0 1 2
1 0 3
1 1 4

Definition 5: Let K = {1,2, . . . ,k} be a set of indices of
an index generation function. If K = I1 ∪ I2 ∪ . . .∪ Iu, each
Ii �= /0, and Ii ∩ I j = /0 (i �= j), then P = {I1, I2, . . . , Iu} is a
partition of the set of indices K.

When all the subsets Ii are singletons (i.e., |Ii|= 1), |P |=
|K| = k. This is a trivial partition. Another trivial partition
is when I1 = K, in which case |P |= 1.

Definition 6: Linear decomposition of an index gener-
ation function f (x1,x2, . . . ,xn) realizes f using a function
g(y1,y2, . . . ,yp) storing indices and linear functions yi:

yi(x1,x2, . . . ,xn) = ai1x1⊕ai2x2⊕ . . .⊕ainxn,

where i ∈ {1,2, . . . , p}, ai j ∈ {0,1} (j ∈ {1,2, . . . ,n}), and,
for all registered vectors of the index generation function,
the following holds:

f (x1,x2, . . . ,xn) = g(y1,y2, . . . ,yp).

Each yi is called a compound variable. For each yi, ∑n
j=1 ai j

is called a compound degree of yi, denoted by deg(yi),
where ai j is viewed as an integer, and ∑ is an integer sum.

Definition 7: An inverse function of an index storing
function z = g(y1,y2, . . . ,yp) in a linear decomposition is
a mapping from K = {1,2, . . . ,k} to a set of p-bit vectors
{0,1}p, denoted by g−1(z). In this inverse function g−1(z),
a mapping obtained by focusing only on the i-th bit of the
p-bit vectors: K→{0,1} is called an inverse function to a
compound variable yi, denoted by (g−1)i(z).

Definition 8: Let ON(yi) = {z | z ∈ K,(g−1)i(z) = 1},
where K = {1,2, . . . ,k} and (g−1)i(z) is an inverse function
of g(y1,y2, . . . ,yn) to yi. |ON(yi)| is called the cardinality
of yi or informally the number of 1’s included in yi.

Example 2: The index generation function S4
1 in Ex-

ample 1 can be decomposed into two linear functions:
y1 = x1⊕x2 and y2 = x1⊕x3, and a function g(y1,y2) shown
in Table II. In this case, deg(y1) = deg(y2) = 2, and S4

1 can
be realized by the architecture in Fig. 1 with a (22×3)-bit
memory for G, while a (24× 3)-bit memory is needed to
directly realize S4

1 without linear decomposition.
For g(y1,y2) in Table II, its inverse functions to y1

and y2 are (g−1)1(z) and (g−1)2(z), respectively. We
have (g−1)1(1) = 0, (g−1)1(2) = 0, (g−1)1(3) = 1, and
(g−1)1(4) = 1. Similarly, (g−1)2(1) = 0, (g−1)2(2) = 1,
(g−1)2(3) = 0, and (g−1)2(4) = 1. The cardinalities of both
y1 and y2 are 2.

In this way, linear decomposition can significantly reduce
memory size needed to realize an index generation function.

131

0

P

1

1

2

3

4

5

6

(a) For P [6]

0

P

1

1

2

3

r

s

s

s

1n

(b) For Pr [7]

Figure 2. ZDDs for P = {{1,3,6},{2,5},{4}} and its Pr .

B. Zero-suppressed Binary Decision Diagrams (ZDDs)

In this subsection, we briefly define ZDDs [3].
Definition 9: A zero-suppressed binary decision dia-

gram (ZDD) is a rooted directed acyclic graph (DAG) rep-
resenting a logic function. It consists of two terminal nodes
representing function values 0 and 1, and nonterminal nodes
representing input variables. Each nonterminal node has two
outgoing edges, a 0-edge and a 1-edge, that correspond to
the values of an input variable. Neither terminal node has
outgoing edges.

A ZDD is obtained by repeatedly applying the Shannon
expansion f = xi f0 ∨ xi f1 to a logic function, where f0 =
f (0→ xi), and f1 = f (1→ xi), and by applying the following
two reduction rules:

1) Coalesce equivalent sub-graphs.
2) Delete nonterminal nodes v whose 1-edge points to

the terminal node representing 0, and redirect edges
pointing to v to its child node u that is pointed by the
0-edge of v.

As is well known, ZDDs can represent sets compactly
and uniquely [3]. Similarly, a partition of an index set
P = {I1, I2, . . . , Iu} can be also represented compactly and
uniquely using a ZDD. In a partition of indices P , we define
a relation Pr between size |Ii| of Ii ∈P and the number of Ii’s
with the same size. Then, the relation Pr can be represented
compactly by a ZDD since Pr is a set of pairs of |Ii| and
the number of Ii’s.

Example 3: Let an index set be K = {1,2,3,4,5,6}, and
a partition of K be P = {{1,3,6},{2,5},{4}}. In this par-
tition, size of each subset is 3, 2, and 1, respectively. Thus,
we have a relation Pr = {(3,1),(2,1),(1,1)}. In another
partition P ′ = {{1,2},{3,4},{5,6}}, we have a relation
P ′r = {(2,3)} since size of all the three subsets is 2.

Example 4: Fig. 2(a) shows a ZDD directly representing
P = {{1,3,6},{2,5},{4}}, and Fig. 2(b) shows a ZDD
representing the relation Pr = {(3,1),(2,1),(1,1)}. In Fig. 2,
dashed lines and solid lines denote 0-edges and 1-edges,

respectively. In Fig. 2(b), nodes 1s,2s,3s represent subset
sizes in P , and the node 1n denotes that the number of
subsets with the same size is 1. Since the size of each
subset is different than others, all the pairs in Pr share the
nonterminal node of 1n in the ZDD.

Theorem 1: [7] Let an index set be K = {1,2, . . . ,k},
a partition of K be P , and a relation between subset size
and the number of subsets in P be Pr. An upper bound
on the number of nonterminal nodes in a ZDD for Pr is√

8k + 1−1.

III. ANALYSIS OF SYMMETRIC PROPERTIES

In a symmetric index generation functions Sn
m, any vari-

able xi has the same number of 1’s, and the number is

|ON(xi)|=
(

n−1
m−1

)
,

since this is the number of registered vectors where xi = 1.
In addition, for any combination of t variables,

|ON(xi1)∩ON(xi2)∩ . . .∩ON(xit)|=
|ON(x j1)∩ON(x j2)∩ . . .∩ON(x jt)|

holds. That is, any combination has the same number of
overlapping 1’s in its variables. Thus, we can compute the
number of 1’s in a compound variable yi from only n, m,
and its compound degree t, without using registered vectors.

Lemma 1: For any combination of t variables xi1 ,xi2 , . . .,
xit in a symmetric index generation function Sn

m,

|ON(xi1)∩ON(xi2)∩ . . .∩ON(xit)|=
(

n− t
m− t

)

holds, where t ≤ m.
Proof: The left side of the equation denotes the number of
registered vectors such that xi1 = xi2 = . . . = xit = 1. Since
the number of 1’s in each registered vector of Sn

m is exactly
m, the set

ON(xi1)∩ON(xi2)∩ . . .∩ON(xit)

includes registered vectors, in which the remaining m− t
1’s are arbitrarily assigned to variables other than xi1 ,xi2 , . . .,
and xit . Thus, the number of combinations choosing m− t
variables from n− t variables is the number of overlapping
1’s in all the t variables.

Theorem 2: For a symmetric index generation function
Sn

m, the number of 1s n1 in any compound variable yi with
compound degree t is

|ON(yi)|= n1(n,m, t) =
d

∑
j=1

(−2) j−1
(

t
j

)(
n− j
m− j

)
,

where d = min(t,m).
Proof: From Definitions 6 and 8, we have

|ON(yi)|= |ON(xi1)⊕ON(xi2)⊕ . . .⊕ON(xit)|, (1)

132

where ⊕ is the symmetric difference of sets:

A⊕B = A∪B−A∩B.

The value of (1) can be computed by extending the prin-
ciple of inclusion and exclusion for union of sets. From
Lemma A.1 in Appendix A, the value of (1) is

∣∣∣∣∣
tM

j=1

ON(xi j)

∣∣∣∣∣ =
t

∑
j=1

(−2) j−1 ∑
Hj∈{2T− /0}

∣∣∣∣∣∣
\

h∈Hj

ON(xih)

∣∣∣∣∣∣ .

In addition, from Lemma 1,
∣∣∣∣∣∣

\

h∈Hj

ON(xih)

∣∣∣∣∣∣ =
(

n− j
m− j

)
.

Since the number of different Hj’s is
(t

j

)
, we have the

theorem. When m < t, it is clear from Definition 3 that for
any j > m,

\

h∈Hj

ON(xih) = /0.

Therefore, the summation is terminated by d = min(t,m).
In addition to the theorem on the number of 1s in a

compound variable, we derive another useful theorem.
Theorem 3: For a symmetric index generation function

Sn
1, let Ht be a subset of its index set K = {1,2, . . . ,k}

including exactly t indices (i.e., |Ht |= t). Then, for any Ht ,
there exists a compound variable yi with compound degree
t such that ON(yi) = Ht .
Proof: From Definition 3, for Sn

1, it is clear that

ON(xi)∩ON(x j) = /0 for any i, j (i �= j),

and from Theorem 2,

|ON(yi)|= t.

Since each xi corresponds to exactly one index, we can
produce a compound variable yi for Ht as

yi = xi1 ⊕ xi2⊕ . . .⊕ xit ,

where ON(xi j) ∈ Ht .
Note that Theorem 3 does not hold for Sn

m with m ≥ 2.
We intend to consider this in a future paper.

IV. OPTIMIZATION OF LINEAR DECOMPOSITIONS

We formulate the optimization problem on linear decom-
position of symmetric index generation functions, and show
a dynamic programming based algorithm using the above
theorems.

y1

y2

1, 2, 3, 4
Set of indices

y2

3, 4

3 4

1, 2

y = 11y = 01

1 2

y = 02y = 02 y = 12 y = 12

Figure 3. Binary decision tree for g of Table II.

A. Formulation of Optimization Problem

The optimum linear decomposition problem of symmetric
index generation functions is formulated as follows:

Problem 1: Given a symmetric index generation function
Sn

m and the maximum compound degree t, find the minimum
number of linear functions for linear decomposition of Sn

m
where no compound degree exceeds t.

Problem 1 can be reduced to a tree height minimization
problem of an ordered binary decision tree that recursively
divides subsets of indices into smaller subsets until all
subsets are singletons [4].

Example 5: Fig. 3 shows an ordered binary decision tree
representing g in Table II. The tree divides the set of indices
into singletons by compound variables y1 and y2. The tree
height corresponds to the number of compound variables.

B. Dynamic Programming Based Algorithm

In symmetric index generation functions, any permutation
of indices does not change the minimum number of linear
functions in their linear decomposition. This is because
exchange of indices does not change the characteristic
function of a symmetric index generation function. Thus,
instead of directly representing partitions P of indices, we
can abstract them as Pr introduced in Section II. Based on
this observation, the existing method [7] uses ZDDs for Pr,
as shown in Fig. 2(b), to represent partitions of indices more
efficiently than direct representation of P shown in Fig. 2(a).

We improve the existing method using the theorems in
Section III. Using Theorem 2, we can compute the optimum
number of 1’s in a compound variable in advance without
compounding original variables xi. The optimum number
is the closest number to k/2 among ones obtained by
compounding up to t variables. In addition, from Theorem 3,
we can consider only the ways to divide a partition of indices
P based on the optimum number of 1’s, rather than com-
binations of compound variables. Since the number of 1’s
can be considered as the number of indices separated from
subsets in P , we can concentrate only on how many indices

133

Algorithm 1: Overview of the proposed algorithm
Input: a symmetric index generation function Sn

1 and
the maximum compound degree t

Output: the smallest number of compound variables hmin
min DPsearch(Sn

1, t) {
n1opt = compute opt numof1s(Sn

1, t);
Let an initial set of partitions be C = {Pr},
where Pr = {(n,1)};

for (h = 1; {(1,n)} /∈ C ; h++) {
for (each Pr ∈ C : current set of partitions) {

for (each different partition P ′r generated by
dividing Pr with n1opt) {

N = store as next(P ′r , h);
}

}
Update the set of partitions C with N ;

}
return h−1 as the solution;

}

should be separated from each subset for optimization, and
avoid time consuming searches of compound variables.

As the first step toward optimization of any Sn
m by

this approach, we present a dynamic programming based
algorithm for Sn

1. Algorithm 1 shows the overview of the
proposed dynamic programming based algorithm. In the
algorithm, C denotes a set of Pr, and its element Pr is
represented by a ZDD. By updating C while generating a
different partition from Pr in turn, the algorithm searches for
a solution. Different partitions P ′r are generated by separating
indices from subsets of indices Si in Pr, where the number
of indices separated from a subset Ii is at most⌊ |Ii|

2

⌋
,

and the total number of separated indices is n1opt . Subsets
in Pr are extracted from a ZDD for Pr by traversing all
the 1-paths in the ZDD. After separating n1opt indices from
subsets, another ZDD for P ′ are constructed using Change
and Union operations that are basic operations in a ZDD
package [3].

A generated partition P ′r is screened by the procedure
store as next() to store it as a set of promising partitions
for the next stage of search. Partitions P ′r are discarded if
one of the following two conditions holds:

1) The same P ′r has already stored.
2) Sum of h and the lower bound on the number of com-

pound variables needed to divide P ′ into singletons is
not smaller than the upper bound on the minimum
solution.

1) Although only different partitions are generated from a
Pr, the same partitions can be generated from other partitions
than Pr in C . Since partitions are represented by ZDDs, this
checking (equivalence checking) is performed on ZDDs in
O(1) time. 2) To discard unpromising partitions as many as
possible, we use the lower bound derived in [5], and a result

Algorithm 2: Overview of the greedy algorithm
Input: a partition of indices Pr and a tree height h
Output: an estimated tree height hheu
greedy search(Pr, h) {

P = turn back(Pr);
for (l = 1; |P |< n; l++) {

N1 = �0;
for (i = 1; i < n1opt ; i++) {

Select a subset I ∈ P making the cost function
minimum by separating an index from I;

n1I++;
}
P = divide sets(P , N1);

}
return h + l−1;

}
Table III

COMPUTATION TIME OF METHODS (IN SECONDS).

Symmetric t hheu hmin Existing Existing Proposed
functions [8] [7]

S10
1 1 9 9 *<0.01 *<0.01 *<0.01

(k = 10) 2 7 6 0.10 *<0.01 *<0.01
3 5 5 0.18 *<0.01 *<0.01
4 4 4 *<0.00 *<0.01 *<0.01
5 4 4 *<0.01 *<0.01 *<0.01

S20
1 1 19 19 *<0.01 *<0.01 *<0.01

(k = 20) 2 14 13 † 0.03 *<0.01
3 10 10 † 0.53 *<0.01
4 8 8 † 1.92 *<0.01
5 7 7 † 2.78 *<0.01

S30
1 1 29 29 *<0.01 *<0.01 *<0.01

(k = 30) 2 22 20 † 0.26 *<0.01
3 16 15 † 9.19 *<0.01
4 12 12 † 127.85 0.01
5 10 10 † 769.06 0.01

* Time is less than 0.01 sec..
† Computation was aborted since it was too long.

of the heuristic method shown in Algorithm 2 as the upper
bound. The cost function used in Algorithm 2 is

cost(P ,N1) =

√√√√∑
I∈P

(|I|
2
−n1I

)2

,

where P is a partition turned back from Pr, and N1 is a
vector of numbers of indices, n1I, separated from each I.

V. EXPERIMENTAL RESULTS

The proposed exact minimization algorithm is imple-
mented in the C language, and run on the following com-
puter environment: CPU: Intel Core2 Quad Q6600 2.4GHz,
memory: 4GB, OS: CentOS 5.7 Linux, and C-compiler: gcc
-O2 (version 4.1.2).

To evaluate the efficiency of the proposed algorithm, we
compare the proposed algorithm with the existing meth-
ods [7], [8], in terms of computation time. The method in [7]
is based on a branch-and-bound approach targeting only
symmetric index generation functions. On the other hand, the
method in [8] is based on a dynamic programming approach
targeting general index generation functions. Table III shows
computation time, in seconds, of each method for some
symmetric index generation functions. The column labeled

134

Table IV
COMPUTATION TIME FOR LARGER SYMMETRIC FUNCTIONS.

Symmetric t hheu hmin No. of No. of Time
functions ZDDs nodes (sec.)

S40
1 1 39 39 1 4 *<0.01

(k = 40) 2 29 26 327 698 *<0.01
3 21 20 1,116 2,341 0.01
4 17 16 3,508 7,136 0.07
5 14 13 4,562 9,903 0.18

S50
1 1 49 49 1 4 *<0.01

(k = 50) 2 37 33 542 1,141 0.01
3 27 25 2,345 4,826 0.03
4 21 20 9,094 18,125 0.24
5 17 17 18,533 37,388 1.01

S60
1 1 59 59 1 4 *<0.01

(k = 60) 2 44 40 807 1,681 0.01
3 32 30 4,240 8,617 0.06
4 25 24 19,297 38,171 0.63
5 21 20 46,374 92,891 3.50

S70
1 1 69 69 1 4 *<0.01

(k = 70) 2 52 46 1,107 2,293 0.02
3 38 35 6,922 13,990 0.13
4 30 28 36,117 71,298 1.39
5 24 23 99,803 199,422 9.67

S80
1 1 79 79 1 4 *<0.01

(k = 80) 2 59 53 1,472 3,036 0.02
3 44 40 10,511 21,181 0.22
4 34 32 61,913 122,152 2.72
5 28 27 194,809 387,639 1731.25

* Time is less than 0.01 sec..

“hheu” in Table III shows results obtained by only the
proposed heuristic method in Algorithm 2.

As shown in Table III, the computation time of the
proposed method is a few orders of magnitude shorter than
computation time of the existing ones. The functions in
Table III are too small for the proposed method, and thus, we
could not obtain its computation time precisely for almost
all functions.

Then, we applied the proposed method to larger index
generation functions. Table IV shows computation time of
the proposed method for larger symmetric index generation
functions. In this table, the column “No. of ZDDs” shows the
number of ZDDs constructed during solution search. And,
the column “No. of nodes” shows the total number of nodes
in ZDDs. From Table IV, we can see that the number of
ZDDs is not large. This is because unpromising solutions are
effectively reduced, and equivalent solutions are efficiently
merged using ZDDs. Therefore, computation time of the
proposed method is still short even for large functions for
which the existing methods cannot find a solution in a
reasonable time.

VI. CONCLUSION AND COMMENTS

This paper shows theorems for symmetric index genera-
tion functions, and presents an exact optimization algorithm
for their linear decomposition. By taking advantage of the
theorems, we can avoid time consuming searches of com-
pound variables, and find an optimum linear decomposition
quickly. Experimental results show that the proposed method
finds optimum solutions much faster than the existing ones.

Our future work includes analysis of symmetric properties
for Sn

m with m ≥ 2, and proposal of an exact optimization

algorithm using these properties. In addition, we will gen-
eralize theorems and algorithms for elementary symmetric
index generation functions to general ones toward fully
theoretical analysis of optimum linear decomposition of
symmetric index generation functions.

ACKNOWLEDGMENTS

This research is partly supported by the JSPS KAKENHI
Grant (C), No.19K11881, 2020. We would like to thank Prof.
Michael Miller for motivating us to use symmetric proper-
ties. The reviewers’ comments were helpful in improving
the paper.

REFERENCES

[1] J. Astola, P. Astola, R. Stankovic, and I. Tabus, “An algebraic
approach to reducing the number of variables of incompletely defined
discrete functions,” 46th International Symposium on Multiple-Valued
Logic, pp. 107–112, May 2016.

[2] R. J. Lechner, “Harmonic analysis of switching functions,” in
A. Mukhopadhyay (ed.), Recent Developments in Switching Theory,
Academic Press, New York, Chapter V, pp. 121–228, 1971.

[3] S. Minato, “Zero-suppressed BDDs for set manipulation in combina-
torial problems,” Proc. 30th Design Automation Conference, pp. 272–
277, 1993.

[4] S. Nagayama, T. Sasao, and J. T. Butler, “An efficient heuristic for
linear decomposition of index generation functions,” 46th Interna-
tional Symposium on Multiple-Valued Logic, pp. 96–101, May 2016.

[5] S. Nagayama, T. Sasao, and J. T. Butler, “An exact optimization
algorithm for linear decomposition of index generation functions,”
47th International Symposium on Multiple-Valued Logic, pp. 161–
166, May 2017.

[6] S. Nagayama, T. Sasao, and J. T. Butler, “An exact optimization
method using ZDDs for linear decomposition of index generation
functions,” 48th International Symposium on Multiple-Valued Logic,
pp. 144–149, May 2018.

[7] S. Nagayama, T. Sasao, and J. T. Butler, “An exact optimiza-
tion method using ZDDs for linear decomposition of symmetric
index generation functions,” International Federation of Computa-
tional Logic Journal of Logic and Their Applications, Vol.5, No.9,
pp. 1849–1866, Dec. 2018.

[8] S. Nagayama, T. Sasao, and J. T. Butler, “A dynamic programming
based method for optimum linear decomposition of index generation
functions,” 49th International Symposium on Multiple-Valued Logic,
pp. 144–149, May 2019.

[9] E. I. Nechiporuk, “On the synthesis of networks using linear transfor-
mations of variables,” Dokl, AN SSSR, Vol. 123, No. 4, pp. 610–612,
Dec. 1958 (in Russian).

[10] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers 1999.

[11] T. Sasao, Memory-Based Logic Synthesis, Springer, 2011.

[12] T. Sasao, “Index generation functions: recent developments (invited
paper),” 41st International Symposium on Multiple-Valued Logic,
pp. 1–9, May 2011.

[13] T. Sasao, “Linear transformations for variable reduction,” Reed-
Muller Workshop 2011, May 2011.

[14] T. Sasao, “Linear decomposition of index generation functions,” 17th
Asia and South Pacific Design Automation Conference, pp. 781–788,
Jan. 2012.

135

[15] T. Sasao, Y. Urano, and Y. Iguchi, “A lower bound on the number
of variables to represent incompletely specified index generation
functions,” 44th International Symposium on Multiple-Valued Logic,
pp. 7–12, May 2014.

[16] T. Sasao, Y. Urano, and Y. Iguchi, “A method to find linear decom-
positions for incompletely specified index generation functions using
difference matrix,” IEICE Transactions on Fundamentals, Vol. E97-
A, No. 12, pp. 2427–2433, Dec. 2014.

[17] T. Sasao, “A reduction method for the number of variables to rep-
resent index generation functions: s-min method,” 45th International
Symposium on Multiple-Valued Logic, pp. 164–169, May 2015.

[18] T. Sasao, I. Fumishi, and Y. Iguchi, “A method to minimize variables
for incompletely specified index generation functions using a SAT
solver,” International Workshop on Logic and Synthesis, pp. 161–
167, June 2015.

[19] T. Sasao, I. Fumishi, and Y. Iguchi, “On an exact minimization of
variables for incompletely specified index generation functions using
SAT,” Note on Multiple-Valued Logic in Japan, Vol.38, No.3, pp. 1–8,
Sept. 2015 (in Japanese).

[20] D. A. Simovici, M. Zimand, and D. Pletea, “Several remarks on index
generation functions,” 42nd International Symposium on Multiple-
Valued Logic, pp. 179–184, May 2012.

APPENDIX

A. Extending Principle of Inclusion and Exclusion

From the principle of inclusion and exclusion for union
of t sets, we have∣∣∣∣∣

t[

i=1

Ai

∣∣∣∣∣ =
t

∑
i=1

(−1)i−1 ∑
Ji∈{2T− /0}

∣∣∣∣∣
\

j∈Ji

A j

∣∣∣∣∣ ,
where T = {1,2, . . . ,t}, 2T is the power set of T , and Ji is a
subset of T including i elements. By extending this principle
for symmetric difference of t sets, we have the following:

Lemma A.1: For symmetric difference of t sets, the fol-
lowing holds:∣∣∣∣∣

tM

i=1

Ai

∣∣∣∣∣ =
t

∑
i=1

(−2)i−1 ∑
Ji∈{2T− /0}

∣∣∣∣∣
\

j∈Ji

A j

∣∣∣∣∣ , (A.1)

where T = {1,2, . . . ,t}, 2T is the power set of T , and Ji is
a subset of T including i elements.

Proof: Unlike union of sets, in symmetric difference, el-
ements belonging to an even number of subsets must be
completely eliminated. Thus, we prove that the total sum of
coefficients in (A.1) is 0 when t is even, and on the other
hand, it is 1 when t is odd. The total sum of coefficients is
obtained by the following:

t

∑
i=1

2i−1
(

t
i

)
,

since the number of different Ji’s is
(t

i

)
.

From the binomial theorem, we have

(1−2)t =
t

∑
i=0

(
t
i

)
(−2)i

(−1)t = 1 +
t

∑
i=1

(
t
i

)
(−2)i

1− (−1)t

2
=

t

∑
i=1

(
t
i

)
(−2)i−1.

When t is even,

0 =
t

∑
i=1

(
t
i

)
(−2)i−1.

When t is odd,

1 =
t

∑
i=1

(
t
i

)
(−2)i−1.

Therefore, we have the lemma.

136

