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Abstract—We focus on a set of r-valued n-variable functions
that are defined by a partition P on the set of rn input vectors.
Specifically, each block of P specifies input vectors, all of which
map to the same function value. For example, a symmetric
function is defined by a partition where input vectors in the
same block are permutations of each other. Given the partition
P and the set S of functions associated with P , we analyze the
set S′ of functions that are a maximal distance from S. Such
functions hold promise for use in crypto-systems.
In this paper, we characterize functions in S′. From this, we

compute the distance to their corresponding partition functions.
We show that, when r and n increase without bound, this distance
approaches the maximum possible, rn. Bent functions achieve
only half the maximum possible distance when n is large. We
show that functions a maximal distance from partition functions
tend to have a uniform distribution across the r possible function
values. Such functions tend to be immune to statistics-based
attacks. Finally, we show that, if the set S′ of functions is
maximally distant from a set S of partition functions, then the
converse is true; that is, S is maximally distant from S′.

Index Terms—Partition functions, partition set, maximally dis-
tant functions, maximally asymmetric functions, bent functions,
mutually maximally distant functions, set partitions, characteri-
zation and count.

I. INTRODUCTION

The distance d between two r-valued n-variable functions,

f(x) and g(x), is the number of input vectors for which

f �= g. If f(x) = g(x), the distance is 0, and, if all function

values differ, then the distance is rn. The distance d between

a function f and a set S of functions is the minimum of the

distances between f and all the functions g ∈ S. S′ is a

maximal distance from S if it contains all functions whose

distance to S is maximum. The distance between two functions

has been used in the analysis of crypto-functions, where an

attack is successful when the attacker has found a function that

is a distance 0 from a function used in the crypto-system. For

example, in a crypto-system designed to fend the use of affine

functions in an attack, the well-studied bent functions are used,

because they are a maximum distance from the set of affine

functions. However, binary bent functions are not balanced and

are therefore subject to statistics-based attacks. The maximum

distance between affine and bent functions is approximately

one-half the maximum possible, 2n. That is, for large n, affine

and bent functions are approximately a distance 2n

2 apart.

In this paper, we show that the maximum distance between

multiple-valued partition functions and functions maximally

distant from partition functions approaches the maximum, rn,

as n and r grow without bound. That is, the maximum occurs

when two functions are different for every input vector.
An important subset of partition functions are symmetric

functions. The set of functions a maximum distance from

symmetric functions, called maximally asymmetric functions,

have a binomial distribution similar to random functions [6],

[10]. Therefore, one can take a random function, change

typically few function values, and create a function that

is maximally asymmetric. This is interesting because both

symmetric functions and random functions are common in

benchmark applications for the evaluation of circuits and

algorithms. Maximally asymmetric functions are similar to

pseudo random functions [1], [4]. Such functions are essential

to crypto-systems and have found application in message au-

thentication systems, distribution of unforgeable ID numbers,

dynamic hashing, and friend-or-foe identification [5].
Similarly, bent functions substitute for random sequences.

They are useful in the creation of additional channels in

synchronous code-division multiple-access (CDMA) systems

that employ Walsh sequences for spreading information signals

and separating channels [12].
This paper deals with partition functions, where a partition

of the input vectors exists, such that the function values within

each block of the partition are all the same. Partition functions

include symmetric functions (unchanged by a permutation

of variables), rotation symmetric functions (unchanged by

a rotation of input vectors), and degenerate functions (in-

dependent of one or more variable). In the case of binary

functions, partition functions include linear structure functions

(f(x) = f(x⊕a), where a is fixed) and self-anti-dual functions

(f(x) = f(x)). This paper extends [10] so that it applies to

multiple-valued functions. It also extends [2], [3], [6], which

count maximally asymmetric functions.

II. DEFINITIONS

Definition 1. An r-valued n-variable function f is a mapping
from the n dimensional vector space Fn

r = {0, 1, . . . r − 1}n
into the r-element field Fr. One instance of the vector space
is an assignment of values to the variables or input vector.

Definition 2. A function f is a distance d(f, S) from a given
set S of functions, if the minimum Hamming distance between
f and all functions in S is d(f, S). Given a set S of functions,
the set S′ of functions is said to have a maximum distance
dS from S if it has the property that, for all f ∈ S′, d(f, S)
is maximum; i.e., dS = maxf∈Fn

r
ming∈S d(f, g).
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Example 1. d(f, S) = 0 iff f ∈ S. In the case of two multiple-
valued functions, f1 and f2, each input vector contributes
either 0 or 1 to the Hamming distance. The contribution is
0, if f1(A) = f2(A), and is 1 if f1(A) �= f2(A). For example,
if the two functions are such that, for all rn input vectors,
the function values disagree, the Hamming distance between
the two functions is rn. The Hamming distance between two
identical functions is 0.

Intuitively, if f ∈ S′, we expect f to have a distance that is

“far” from functions in S. It is tempting to believe that if S is

a maximum distance from S′, then S′ is a maximum distance

from S.

Definition 3. Two sets of functions, S and S′, are mutually
maximally distant1 if S′ is a maximum distance from S and
S is a maximum distance from S′.

Example 2. Fig. 1(a) shows two sets of functions, S and S′,
that are mutually maximally distant. Here, S is the set of all 2-
variable binary functions in which exactly two function values
are 1. The two constant functions, f(x) = 0 and f(x) = 1,
compose a set S′ that is a maximum distance from S, where
the maximum distance is 2. The red arrow from S to S′ labeled
“2” shows this. Conversely, the function set S consists of
functions that are maximally distant from S′. This is indicated
by the other red arrow labeled “2”. It follows that the two
sets, 1) {f(x) = 1 if exactly two function values are 1} and 2)
{f(x) = 0, f(x) = 1}, are mutually maximally distant.

Fig. 1(b) shows two sets that are not mutually maximally
distant. Here, S is a set consisting of all 2-variable functions in
which exactly three function values are 1. The single constant
function f(x) = 0 compose a set S′ that is a maximum
distance from S, where the maximum distance is 3. The
red arrow from S to S′ labelled “3” shows this. On the
other hand, the set of functions a maximum distance from
S′ = {f(x) = 0} is S′′ = {f(x) = 1}. The red arrow labeled
“4” shows this. It follows that, while S′ = {f(x) = 0} is
maximally distant from S, S is not maximally distant from
S′ = {f(x) = 0}. That is, S and S′ are not mutually
maximally distant.

Tokareva [11] showed that bent functions are mutually

maximally distant from the affine functions. In this paper,

we show that a set of multiple-valued partition functions is

mutually maximally distant from some other set of multiple-

valued functions.

Definition 4. Let P be a set partition of the rn input vectors
into blocks {B1, B2, . . . , B|P |}, where |P | is the number of
blocks in partition P . A partition function has the property
that, for two assignments, A and A′ in the same block of set
partition P , f(A) = f(A′). A partition set is the set of all
partition functions associated with a partition P .

1Tokareva [11], Ivchenko, Medvedev, and Mironova [6], and Oblaukhov
[7] refer to “mutually maximally distant function sets” as “metrically regular
sets” or “metric complements”.

Fig. 1: Defining Mutually Maximally Distant Sets

Example 3. Table I shows the input vectors associated with
partition P , which represents the symmetric functions. Since
the functions are 2-variable binary, there are four input vec-
tors, 00, 01, 10, and 11. Here, P = { {00}, {01, 10}, {11} },
i.e., there are two blocks of one input vector each, and one
block with two input vectors. Two input vectors are in the
same block of the partition if their corresponding rows are
identical. This is a partition set. Table II shows the input
vectors associated with partition P which represents the self-
anti-dual functions. Here, P = { {00, 11}, {01, 10} }, i.e.,
there are two blocks of two input vectors each. This is a
partition set. Table III shows the set of input vectors which
represents the set of affine functions. This is not a partition
set2.

III. CHARACTERIZATION OF MAXIMALLY DISTANT

MULTIPLE-VALUED PARTITION FUNCTIONS

In the case of bent functions, there is no known charac-

terization. Specifically, there is no known specification that

allows the direct enumeration of all bent functions. The only

known way to generate all bent functions is to enumerate a set

of functions known to contain all bent functions and to test

2Since all four rows in Table III are different, the partition is trivial.
Specifically, each input vector is in a block that is not shared with any other
input vector. Table III does not represent a partition set because certain input
vectors are missing (8 out of 16 are missing).
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TABLE I: Symmetric Functions on Two Binary Variables - A

Partition Set, Where P = { {00}, {01, 10}, {11} }.
x1x2 0 1 x1x2 x1x2 x1∨x2 x1∨x2 x1⊕x2 x1⊕x2
0 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 1 0 1 0

1 0 0 1 0 1 1 0 1 0

1 1 0 1 1 0 1 0 0 1

TABLE II: Self-anti-dual Functions on Two Binary Variables

- A Partition Set, Where P = { {00, 11}, {01, 10} }.
x1x2 0 1 x1⊕x2 x1⊕x2
0 0 0 1 0 1

0 1 0 1 1 0

1 0 0 1 1 0

1 1 0 1 0 1

TABLE III: Affine Functions on Two Binary Variables - Not

a Partition Set.

x1x2 0 1 x1 x1 x2 x2 x1⊕x2 x1⊕x2
0 0 0 1 0 1 0 1 0 1

0 1 0 1 0 1 1 0 1 0

1 0 0 1 1 0 0 1 1 0

1 1 0 1 1 0 1 0 0 1

each for bentness. For example, all functions whose weight

is bent (the number of input vectors for which the function

is 1 is 2n−1 ± 2n/2−1) can be enumerated and each tested

for bentness (determine if the Hamming distance to all affine

functions is 2n−1 ± 2n/2−1).

However, it is different for partition functions. The max-

imally distant functions can be identified by a process that

examines the input vectors one block at a time. This process

depends on the fact that the maximal distance is the sum of the

distances contributed by each block and the distances are de-

termined only by each block independent of the contributions

of any other block. Formally,

Definition 5. Let there be βi input vectors associated with
block Bi of a partition P associated with a set of partition
functions. A distribution of βi input vectors to the r logic
values is uniform if 1) no logic value is assigned more than
�ai

r � input vectors, and 2) no logic value is assigned fewer
than �ai

r 	 input vectors.

Example 4. A uniform distribution of input vectors is a
distribution that is as even as possible. For example, if βi = 6,
and r = 3, in a uniform assignment, each logic value has
two input vectors. If βi = 7 and r = 3, then, in a uniform
distribution, one logic value has three input vectors and the
other two have two. On the other hand, if βi = 6, and if one
logic value has three input vectors, one has two, and one has
one, this is not a uniform distribution.

Theorem 1. An r-valued n-variable function f(x) is maxi-

mally distant from a multiple-valued partition set if and only if,
for all blocks in the partition, f(x) has a uniform distribution
of input vectors to the r logic values.

Proof:
(only if) Assume that f(x) is maximally distant from a

partition function. The distance can be computed as the sum of

the distances associated with each block of the partition. Since

each block contributes to the maximal distance independently,

it must be that all blocks of the partition contribute the

maximum distance. On the contrary, assume that at least one

block does not have a uniform distribution of input vectors to

the r logic values. It follows that there is a logic value v in a

block βi that occurs more often than �βr �, or there is a logic

value v in a block βi that occurs less often than than �βi

r 	.
It follows that the (partial) distance to a partition function

whose block βi maps to v is less than the maximum possible.

It follows that the total distance is less than maximum. This

is a contradiction.

(if) Assume that f(x) has a uniform distribution of values to

variables to the r logic values in all blocks of the partition. On

the contrary, assume the f(x) is not maximally distant from a

set of partition functions. If follows that at least one block βi
fails to achieve the maximum distance to partition function.

However, the maximum distance for βi is achieved only when

the logic values within βi are uniformly distributed. It follows

that f(x) has a distribution of logic values within βi that is

not uniformly distributed. This is, a contradiction. �
Theorem 1 is a complete characterization of functions that

are maximally distant from a set of partition functions.

IV. MAXIMAL DISTANCES FROM MULTIPLE-VALUED

PARTITION FUNCTIONS

Given a partition set S of functions associated with a

partition P , we determine, in this section, the distance DP to

the maximally distant set S′. We know that this distance is the

sum of distance contributions from each block in the partition.

Further, the contribution from each block is independent of the

contribution from other blocks.

Theorem 2. The distance DP between the set S of r-valued
n-variable partition functions associated with partition P , and
its maximally distant set S′ is

DP = rn −
|P |∑
i=1

⌈
βi
r

⌉
, (1)

where |P | is the number of blocks in partition P .

Proof: The sum in (1) enumerates the blocks in partition P .

Each block contributes βi input vectors to the total distance,

except for matches across a uniform distribution. This latter

contribution is �βi

r �, since the logic value(s) with the most

matches contributes the least partial distance. Thus, DP is∑|P |
i=1(βi − �βi

r �). Substituting rn =
∑|P |

i=1 βi, yields (1). �
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Let βi = kr, for some integer k ≥ 1. Then, �βi

r � = k, and,

for n→∞, |P | → rn

kr = rn−1

k . Thus, DP → rn −∑|P |
i=1 k =

rn − rn−1

k k = (1− 1
r )r

n. Therefore,

Corollary 1. When βi = kr for some integer k ≥ 1, n→∞,
and r → ∞, the distance DP between a set of r-valued n-
variable partition functions associated with partition P , and
its maximally distant set approaches rn, the maximum possible
distance between any two r-valued n-variable functions.

Note that, when r = 2, this distance spans approximately

one-half only of the maximum possible distance. We observed

earlier that, in the case of binary bent functions, the distance

between affine functions and (the maximally distant) bent

functions is 2n

2 , which is one-half of 2n, the maximum possible

distance between two n-variable binary functions.

V. COUNT OF THE MAXIMALLY DISTANT FUNCTIONS

FROM MULTIPLE-VALUED PARTITION FUNCTIONS

Given the characterization of functions that are maximally

distant from a multiple-valued partition function, shown in

Section III, we can now calculate the number of functions

in that set. Specifically, we can calculate the number of ways

a uniform distribution can exist in each block. As a result, the

number of maximally distant functions will be expressed as a

product, where each component of the product corresponds to

the number of ways input vectors can be chosen so that the

maximum distance is achieved within the block.

Theorem 3. The number of functions that are maximally
distant from the set of partition functions associated with
partition P is given as

NP =

|P |∏
i=1

(
r

φi

)
βi!

�βi

r 	!
r−φi

(�βi

r 	+ 1)!φi

, (2)

where |P | is the number of blocks in partition P , βi = |Bi|
is the number of input vectors in block Bi, and where

φi = βi − r

⌊
βi
r

⌋
(3)

is the number of logic values that is 1 more than the number
containing the minimum number of input vectors.

Proof: We calculate the number of functions that are a maxi-

mum distance from a partition set of functions by multiplying

the number of ways in each block to achieve a uniform

distribution of input vectors to the r function logic values.

Thus, NP in (2) is expressed as a product over the |P |
blocks of P . By definition, over all the input vectors within

each block, the partition function values are the same. Thus,

functions that are maximally distant are distributed uniformly.

In counting the maximally uniform distributions, we can think

of the logic values as bins and the input vectors as balls. We

seek to count the distributions of distinct balls into distinct

bins where each bin has the same or nearly the same number

of balls. If the number of input vectors βi to the ith block

is a multiple of r, each logic value will occur exactly �βi

r 	

times, which is the perfectly uniform distribution. If βi is a

multiple of r plus 1, in the uniform distribution, all logic

values have �βr 	 input vectors except one, which will have

1 more. Which logic value has 1 more can be specified in

r =
(
r
1

)
ways. In general, there will be φi = βi − r�βi

r 	
logic values in (2) with 1 more input vector. Which of the

r logic values have 1 more is specified in (2) in
(
r
φi

)
ways.

We count each distribution as permutation of the distinct input

vectors of values to the variables (βi!), except any permutation

within a bin corresponding to a logic value does not change

the sought after distribution. That is, a rearrangement of

input vectors within each ’logic value’ bin leaves unchanged

the distribution. Thus, for each combination
(
r
φi

)
, there are

(�βi

r 	!
r−φi

(�βi

r 	+ 1)!φi ) possible rearrangements, for a total

of
(
r
φi

)�βi

r 	!
r−φi

(�βi

r 	+ 1)!φi ) arrangements of input vectors

for each block. �

VI. PROPERTIES OF MAXIMALLY DISTANT FUNCTIONS

A. Functions related by a permutation of variables

Theorem 4. Let S be a function set with the property that
if f ∈ S, then f ′ ∈ S, where f ′ is f with function values
permuted by some permutation. Then, the maximally distant
set S′ to S has the property that if g ∈ S′, then g′ ∈ S′, where
g′ is g with function values permuted by the same permutation.

Proof: Let S be a function set with the property that if f ∈ S,

then f ′ ∈ S, where f ′ is f with function values permuted by

some permutation. We showed in Theorem 1 that, given a

set of functions S, the set of all maximally distant functions

is derived as a uniform distribution of logic values across

each block. Further, this is a complete characterization of the

maximally distant functions. A permutation of the logic values

across the construction of S′ leaves the distances between

functions unchanged, but assures that, if function g ∈ S′, then

g′ ∈ S′, where g′ is g with function logic values permuted by

the same permutation. �

The property that a set S of functions contains all functions

derived from other functions in S by permuting function values

is a common one. It occurs in symmetric functions and bent

functions, for example.

B. Distribution of functions that are maximally distant from
partition functions

We note that functions maximally distant from partition

functions tend to have a uniform distribution of function

values. That is, in constructing such functions, we use uniform

distributions of logic values across the partition blocks. Since

this occurs for all blocks in the partition, this tends to make

the overall distribution uniform. We have

Theorem 5. Let S be a partition set of functions, and S′ its
maximally distant set. Then, the functions in S′ are uniformly
distributed with respect to function values.

In a cryptographic application, functions in S′ will have

the desirable characteristic of having uniformly distributed
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function values. Such functions have immunity to statistics-

based attacks.

VII. PARTITION FUNCTIONS AND THEIR MAXIMALLY

DISTANT FUNCTIONS ARE MUTUALLY MAXIMALLY

DISTANT

As noted in Section II Definitions, the set of bent functions

is mutually maximally distant from the set of affine functions.

In this section, we show that a similar statement is true

of partition functions and functions maximally distant from

partition functions.

Theorem 6. Let S be a partition set corresponding to a
partition P , and let S′ be the set of functions that are
maximally distant from S. Then, S is also maximally distant
from S′.

Proof: Let P =
⋃

i∈I Bi be the partition of Fn
r = {0, 1, . . . r−

1}n, the set of input vectors. Let i ∈ {1, 2, . . . k} index the k
blocks of P . Let βi = |Bi| be the number of input vectors in

block Bi. Let g ∈ S′. Then, dS = d(g, S). Theorem 1 shows

that the distribution of logic values to each block Bi of g is

uniform. That is, each logic value occurs no more than �βi

r �
times and no less than �βi

r 	 times in every block of Bi of g,

and this is a complete characterization of g.

Let f be maximally distant from S′. Then, d(f, S′) ≥ dS ;

otherwise, dS �= d(g, S). Contrary to the hypothesis, assume

that f /∈ S. It follows that there is at least one �, such that

B� contains at least two different logic values. That is, block

B� does not satisfy the requirement on partition functions that

all input vectors in B� map to the same logic value. Since

the distribution of logic values to block B� is not balanced,

at least one logic value, ρ, occurs more than �kl

r � times

or less than �kl

r 	 times. Consider the contribution of B� to

d(f, S′). When there is balance, the contribution is βi−�βi

r 	.
When there is imbalance, the contribution is strictly less,

specifically for input vectors that map to the logic values that

are over-represented in the unbalanced distribution. We have

d(f, S′) ≤ ∑
i∈{1,2,···k} C

unbal
i <

∑
i∈{1,2,···k} C

bal
i = dS ,

which contradicts d(f, S′) ≥ dS , where Cunbal
i is the contri-

bution to the distance by block Bi in the case where at least

one block is unbalanced, and Cbal
i is the contribution to the

distance by block Bi in the case where all blocks are balanced.

�

VIII. CONCLUDING REMARKS

Partition sets are based on a set partition P of the input

vectors. Specifically, partition sets have the property that all

input vectors in the same block of P map to the same

function value. For example, symmetric functions are partition

functions in which all blocks contain input vectors that are

permutations of other input vectors in the same block. Other

partition functions include rotation symmetric functions, and

degenerate functions. In this paper, we characterize the set S′

of functions that are maximally distant from a partition set S.

From this, we compute the distance between S and S′ and the

number of functions in S′. The distance is a metric for how

effective a function in S′ is in a cryptographic application,

in which a random-like function is sought for encryption. We

show that when n → ∞ and r → ∞, where βi = kr, for

some integer k ≥ 1, the maximal distance between S and

S′ approaches the maximum possible between two functions.

Namely, this distance approaches rn, which occurs between

two functions that differ in all input vectors.

We also show that functions which are a maximal distance

from a set S of functions tend to be balanced. That is,

their function values tend to be evenly balanced among the

r possible function values. This is a benefit because it reduces

the cryptosystem’s vulnerability to statistics-based attacks.

Finally, we show that partition functions are mutually max-

imally distant from another set. That is, if S is a partition set,

then the maximally distant set of functions S′ has the property

that S is maximally distant from S′.
We finish with a conjecture.

Conjecture 1. Let S be a set of r-valued n-variable functions,
and let S′ be the set of functions that are maximally distant
from S. S and S′ are mutually maximally distant if and only
if S has the property that, if f ∈ S then f ′ ∈ S, where f ′ is
f with the function values permuted.

In this paper, we show in Theorem 6 that Conjecture 1 is true

for the special case where S is a partition set.

Fig. 1 also corroborates Conjecture 1. That is, in Fig. 1a,

which shows two mutually maximal functions, all functions in

S(S′) occur as the complement function of another function

in S(S′). On the other hand, in Fig. 1b, which shows a set

S of functions and a set S′ of functions that are maximally

distant from S, such that S is not maximally distant from S′,
functions in S do not occur as complements.

Also, note that affine functions and bent functions are

mutually maximally distant from each other and have the

complemented property. It is interesting that, although affine

functions are not partition functions, they are complement

functions.

Finally, the trivial partition P consisting of blocks, all of

which contain a single input vector, presents a potentially

absurd proposition. From (1), the distance to the maximally

distant set is DP = 0 , while from (2), the number of functions

in the maximally distant set is NP = rr
n

. That is, the set

of all functions is ‘maximally distant’ from the partition set

consisting of all functions, with the maximum distance being

0. Every function in S′ is a distance 0 from one function in S,

and, conversely, every function in S is a distance 0 from one

function in S′. Thus, S and S′ are mutually maximally distant

from each other with the distance being 0. When the distance

between S and S′ is greater than 0, S and S′ are necessarily

disjoint. When the distance is 0, S and S′ are nondisjoint and

each consists of all input vectors.
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